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INTRODUCTION

Acoustic or sonic fatigue, the deterioration of material and

structural strength from high frequency wide band noise, is an

important factor in the structural design and safety of modern

aircraft and aerospace structures. The need to understand how

noise is generated and how structures respond to that noise is

critical to the design of future aircraft such as the National

Aerospace Plane (HASP) and various short take-off and landing

aircraft (STOL). Advanced engine designs using propfans, pres-

ently noisier than conventional turbofans, add to the difficulty

of properly designing structures without the support of an ade-

quate experimental database.

The need for predictive techniques that are accurate and

easy to use is of paramount importance to designers of present

and future aircraft structures. Notwithstanding the uncertain-

ties associated with acoustic load generation, stress prediction,

adverse thermal environments, and the lack of fatigue damage pre-
diction models for both metals and composite materials, it is

imporant o have mathematical models that can represent the

random nature of the noise environment to a degree that permits

rational design to proceed. Of associated concern is that with

increased noise levels, the structural panels can behave in a

nonlinear fashion; thus, linear mathematical models may be inap-

propriate for use. Indeed, even if linear models were conserva-

tive in all respects, their use would only lead to designs which

were inherently too heavy, thereby potentially provoking design

modifications that are more costly and less optimal.

New materials such as polymer and metal matrix composites

have shown themselves to be potentially useful in aircraft struc-

tures; however, the limited amount of data related to their per-

formance in the presence of an acoustic environment is disturbing



to a designer. Thus, analytical techniques for predicting life

and reliability when only a minimal amount of material property

data is available are urgently needed.

The surface protection systems of aerospace and aircraft

structures arc, usually constructed from discretely stiffened

panels or stiffened shells. High cycle fatigue failures have

occurred in these structures with the majority of fatigue cracks

appearing in the near vicinity of the stiffening element or the

stiffener itself (Reference.. 1-5). Proper dynamic interaction

between the panel and various stiffening elements should be taken

into account when calculating the response of the panels and of

the stiffeners.

Extensive research has been carried out for linear and non-

linear analysis of a single bay panel (References 6-13). For

discretely stiffened panels, most analytical work is based on

linear theory. However, under intensive acoustic, aerodynamic,

and thermal loadings, these panels vibrate in a nonlinear fashion

and a nonlinear analysis is needed to predict deformations,

stresses, and fatigue life. Different methods have been proposed

to study random vibrations of nonlinear systems (References

14,15). Among the most widely used are the Fokker-Planck equa-

tion solution (References 16,17), perturbation method (References

18,19), stochastic linearization (References 20-22), and the time

domain Monte Carlo approach (References 23-25). Exact solutions

to the Fokker-Planck equations are available only for a few

simple cases. The perturbation method is usually limited to one-

or two-degrees-of-freedom systems and is valid only for weakly

nonlinear cases. The stochastic linearization method, although

suitable for problems with strong nonlinearities, may not yield

meaningful results for complex nonlinear problems that might be

encountered in flight structures. The time domain Monte Carlo

approach can be used efficiently for response analysis of nonlin-

ear structures subjected to random pressure fields. In this

approach, the random pressure inputs are simulated first in time

domain using simulation procedures of stationary and Gpussian

2



random process (Reference 23), then the resulting nonlinear equa-

tions of motion are solved in the time domain by numerical tech-

niques (References 23-25).

When surface protection systems of a flight vehicle are

exposed to high speed aerodynamic surface flow or engine exhaust

hot gases, the surface temperatures could reach 3,000"F (Refer-

ence 26). The effects of those high thermal gradiants are degra-

dation of strength, stiffness, and fatigue life (References

8,27). In addition, structural-aerodynamic instabilities such as

buckling, "oil canning," and "snap through" could be induced by

the action of Lhermal, aerodynamic, and acoustic loads (Refer-

ences 5,8,12,13). These effects should be accounted for in the

nonlinear response of structural panels.

The objective of the Phase I research documented herein was

to develop a computational procedure for predicting the life and

reliability of metal and composite structural panels subjected to

complex dynamic loads from acoustic, r-erodynamic, and thermal

environments. Starting with existing work for the prediction of

sonic fatigue in stiffened panu s using the time domain method

(Reference 28), this research has extended the model to incluez

composite materials. Furthermore, the analytical procedure now

includes programs to compute the time history response to random

noise and statistical analysis to compute probability density and

peak distribution histograms of the stresses, upcrossing rates,

and expected fatigue damage.

3
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II

TECHNICAL DISCUSSION

The basic approach used in the present research can be cate-

gorized into three distinct stages, each involving its own set of

srecialized formulations. The first stage (Section II A.) con-
cerns a mathematical description and phenomenological representa-
tion of the acoustic pressures which act on surrounding structure

(a panel in this work is used). The second important stage (Sec-
tions II B. and II C.) deals with the kinematic and structural

response of the panel to ths acoustic loading. In other words,
what are the displacements and stresses? The third stage (Sec-

tion II D.) requires an estimation of panel fatigue life based on

panel structural response and the expected acoustic environment.

The relevant equations resulting from consideration of these

three stages.are contained in the computer code discussed in

Section II E.

A. SIMULATION OF LANDOM INPUT PRESSURES IN SPACE-TIME DOMAIN

The random pressure acting on a thermal protection system of

a supersonic/hypersonic aircraft or sub-orbital/orbital vehicle
arises from engine exhaust noise, turbulent surface flow, oscil-

lating shocks, and flow separations. In addition, there might be
induced structure-borne dynamic loads due to engine and equipment
vibrations and nonsteady aerodynamic loads due to high speed

surface flow aad vibrations of the thermal protection systems.
During a normal mission consisting of take-off, maneuvers,

steady flight, and landing, the thermal protection systems will
be exposed not only to long duration stationary pressure but also
to short-burst intense nonstationary pressures. Furthermore,

oscillating surface shocks and flow separations could create

severe localized pressures which must be accounted for when pre-
dicting the fatigue life of a structural component.

4



In the Phase I work documented herein, the analysis of the
random input pressure will be limited to stationary and Gaussian

random pressures arising from engine exhaust noise and turbulent

boundary layer flow. Examination of the nonstationary and non-
Gaussian characteristics of surface pressures arising in regions

of oscillating shocks, separated flows, and rapid changes in

thrust requirements will be addressed during the Phase II

activities.

1. Simulation of Stationary-Homogeneous Gaussian Random
Pressure

Consider a random pressure p(x,y.t) acting on the surface

of a high speed flight vehicle. The pressure acting normal to

the surface varies randomly in time and space along the surface

crordinates x and y. The pressure p(x,yt) is characterized by a

c:zoss-spectral density function Sp(k, iw) where k-xI-x 2 and

l1-Yl-Y2 are the spatial separations and w is frequency., The

cross-spectral density S. is obtained utilizing experimental

data, and various empirical forms are available for jet noise

(References 5,29), rocket noise (Reference 30), and turbulent
boundary layer flow (References 7,9). The simplest form of the

cross-spectral density is the truncated Gaussian white noise

pressure uniformly distributed with spatial coordinates x and y

and

SJ(tT1W) so if 0O U:5WUw
0{if w<O or w>w, (I)

where S. is a given constant and wU is the upper cut-off

frequency.

The spectral density Sp(k 1 ,k 2 ,w) can be obtained in wave-

number-frequency domain by taking the Fourier transformation of

Sp(tT, u) as

5



Sp(k 1 , k 2 l ,w) d(2),2)2f Sp(t.,T~jw)e-k•-Zdd (.

Then, the random pressure p(x,y.t) can be simulated by the series

(Reference 23)

NI N2 N3 I

P(X, ~ ~ ~ r Yt)v, S(k ~It 2j ,wZ)AkAk 2AW]2

L-l J-1 r-1

cos(k 1 ,x + k 2jY + Wrt + Our) (3)

where *,j, are realized values of independent random phase angles

uniformly distributed between 0 and 2n. The values of the

spectra are selected at

ktj-kjj+iAkj i= 1 92,...,tN

k 2 ,-k 25 +jAk 2  J- 1,2,...,N2
(4)

o,=w ,+rAw r-l,2,,,,,N3

where the wave number and frequency intervals are

Ak- ((kI.-k11)/Nj

Ak2 =(k2.- k21)/ N2

(5)

in which the su'scripts u and I indicate the lower and the upper

cut-off values o.1 the wave number and frequency, rospectively.

6



Ar For a generation of random sample functions from Equation
3 with the spectral density function close to the one specified

and a large number of spatial (x,y) and time (t) points, Nis N 2 ,

To rducethecomputation costs and improve the effi-
ciency of simulation, the Fast Fourier Transform (FFT) technique

can be utilized (References 31,32). Rewriting Equation 3 in the

form

[d -I U 2 -M 31 A1_

pXxtyIt) -Re ~ Z ZAfire Qf (6)
L -0 J-0 r-O

ap, and evaluating p(x~y.t) at

X MA~X, m=O,1 I $&$SMI- I

y=nAy, n -Q0,1 ,,..,M 2 -

t -qAt, q -0, 1 006OM 3 - 1()

where "Re" indicates the real part of Equation 6 and

Atjrin[2Sp(k~jjk 2 jpWr)AtkjAk 2 AW]2  (8)

In Equations 6 and 7,

M n - v N1 > N1 2-

M 2= 2 V2 N 2 > N2 = 2

M 3 - 2 m'- V3 >N3- 2 (9)

7
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and

Ax- 2rc/MAk, - 2rc/vlk.

Ay = 2n/M 2 Ak 2 = 2n/V2.

(10)
At= 2n/M 3 Aw- = 2,n/V 3 W(10

with v 2 m-n1 v 2 -2"', v2-2 '-V,3 and mn1 >ni, M 2 >n 2 , m 3 >n 3 all

being positive integers. The use of the FFT technique can be

applied to Equation 6 directly resulting in a drastic reduction

of computer time.

A second difficulty arising from the simulation of a

three dimensional random process, as shown in Equation 6, is the

creation of a large number of complex numbers that rT•ust be stored

in the computer for a standard FFT application. For example, if

N1 -N 2 -N 3 -128, VVa-v 3 -4, M1 -M 2 -M 3 -5129 a three dimensional

field of 512 by 512 by 512 complex numbers must be stored in

order to perform a three dimensional FFT procedure. This storage

requirement is significant even for large mainframe computers.

Thus, simulations of random processes have been primarily applied

Ito one dimensional and, in some cases, two dimensional uses. If

a random pressure acting on a structural surface can be assumed
•'•Ito be uniformly distributed in space, Equation 6 reduces to a one

dimensional simulation

P(t)R -(11)a

r-O

where

Ar [23p(Wr)AWV] (12)

8
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and Sp(w) is the power spectral density of random surface pres-

sure. In order that random pressures can be simulated either

from Equation 6 or Equation 11, the input spectral densities need

to be prescribed.

2. Turbulent Boundary Layer Flow

Convective turbulent flow produces random pressure fluc-

tuations that act on the surface protection system of all flight

vehicles. A considerable amount of work, both theoretical and

experimental, has been carried out on this subject with regard to

panel response, panel flutter, and noise transmission (References

7,9,10,24). However, for high speed supersonic and hypersonic

flow, the information that is available seems to be very limited,

and a substantial amount of work will be needed to characterize

random pressures for high speed flows. For the purpose of this
work, the semi-empirical forms of the cross-spectral density cor-

responding to separated supersonic flow given in Reference 9 will

be considered. For a homogeneous turbulent flow convecting in
the x-direction over a structural surface, the cross-spectral
dens:ity can be expressed as

s ( i, nw) S(w) R (o, W)I Ry(0, n, r )Je-1Wt•'

0•W<o0 (13)

in which R(.,,), S(w), and U, are the correlation coefficient,

surface pressure spectral density, and convection velocity,

respectively. For separated supersonic flow, the empirical

formulas from Referer e 9 are

R , 
(14)

9
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R (O,-,w)= I¶I (15)

S(2)1 / e(-8.094-1.239--O.M~i'-°.O90 -'°.14ai44-_,O01a5) (16)

wher'e w -ln(w8/2nU.), 6. U., and q. are boundary layer thickness,

free steim velocity, and free stream dynamic pressure, respec-

tively. The attenuation coefficients al and a 2 indicate the

degree of spatial correlation of random pressure p(xyt).

Similar forms of cross-spectral density are available for sub-

sonic and attached supersonic flow (References 7,9).

For a linear response analysis of surface panels using
the power spectral density approach, Equation 13 can be used

directly as an inpmt parameter. This procedure is described '.n

Section II C. 1. However, for the time-domain nonlinear response

study simulated space-time histories are needed as presented in

Equations 6 and 11. The required spectral density can be

obtained by substituting Equation 13 into Equation 2 and perfy.rm-

ing Fourier transformation

S(w)a, "a2
2 2+ )2][(2 2)(17)

S~ ~~ 3 [a,"k' u ( o/ U, + k 2 =[+k2 l"

For low supersonic flow at Mach number = 2, 8- 0.91 in., a,-

1.22, a 2 - 0.26, and U,-O.75U. (Reference 9).

3. Jet Engine Exhaust Noise

One of the primary causes of fatigue in many flight

structures is a result of acoustic loads generated by near-field

jet exhaust noise. Various empirical forms similar to those

given in Equations 13-16 are availelile to characterize the random

pressure due to jet exhaust noise. However, for supersonic-

10



hypersonic aircraft such as the NASP, detailed statistical infor-

mation on the localized pressures does not seem to be available

at the present time. Preliminary estimates indicate that the

local noiae levels will be very large, exceeding 180 decibels

(Reference 26).

4. Uniform Dis,'tribution of Random Pressure

Useful approximations can be obtained by assuming the

input pressure to be uniformly distributed over the surface of a

structural ccmponent. Then, the cross-spectral density can be

approximated using band-limited Gaussian white noise conditions,

such as the one given in Equation 1. The expression for S,, can

be written as

20 1 o SPLI 10

(18)

where po is the ref erence pressuret po 2.9 X10, psi (0.00002N /M 2),

and SPL is the sound preasure level expressed in decibels.

B. STRUCTURAL M4ODELING

The 'governing equations of motion for an orthotropic

composite are given by (Reference 33)

a~w 2 w

a2 F d2wV a2F d2 W a2 F )2W

ay- dX2  bX 2 ~~ ~ xY dxdy

bdW bd 2 W 2 T7.,,T-,\Tb ---- N - +7VM +VM' ,X ,t (19)
Xý2 YY2 (x Yt



ld 4 F1 dF IdF
a 2 2 aX+ (a6,+ 2 al2)h 2 + ha y4

+ \72 NT "+'' 2 NT a2W 02 aW

+V \lx; y ,•") y2W (20)

where DOp, Dl 2, D 22, and D 66 are bending stiffnesses; alit a 12, aP 2,

and a6,6 are membrane compliances; N' and Ny are the inplane loads

applied at the boundaries; F is the Airy stress function; N', Nr?

Mr, and MW" are the inplane and bending thermal load terms,

respectively; pr is the. random input pressure; m. is the mass

per unit area; h is the plate thickness; and c is the dampinC

coefficient.

The structural mechanics embodied in Equations 19 and 20 are

a result of using von Karman's equations for large deflections

(References 33-35) of elastic isotropic plates as modified by

Ambartsumyan for orthotropic materials (Reference 33),

The terms NAr NT, MY , and M' are computed from

-- /

;.1 NT =...L.2j T(x,y,z)dZ (21)

2h2
h/2

T 22C
NY= -- T(x,y,z)dZ (22)

-h/2
." 

h/2

M -- 2 T(x,y,z)ZZdZ (23)
-h/2
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in which a,, and z2 are coefficients of thermal expansion and T

is the temperature distribution in the panel.

The membrane inplane forces are given by

a2 F
* N a- -- (25)

dy 2

a2 F (26)

N M

a 2F (27)

such that inplane equilibrium requirements are identically oatis-

fied. Equation 19 expresses thQ dynamic equilibrium in the

direction normal to the panel, while Equation 20 is the compati-

bility condition for inplane strains.

The panel is assumed to be simply supported on all four

edges. Exact boundary conditions for the Airy stress function F

are very complicated and, for the present study, the inplane

boundary conditions are satisfied on the average (References

10,35,36). Thus,

b a

f ax. dxdy - 0 (28)

b

ff dydx (29)

0 0
Siq, 1-o,. a Mo

YKO.., (30)

13



II

(31)

b of •d(32)

•Y ado Nydx (33)

The terms u and u in Equations 28 and 29 are the inplane dis-

placements which are expressed as

-•x"31'2y-'F a 2 I + Na •( 4

axYX2a (34)

au a2F a 2 F (W'\ 2
a- 2 P-+a22 + N 2 (35)

Equations 28 and 29 imply no inplane stretching of the panel

edges in an average sense and they correspond to the inplane

boundary conditions for immovable edges. Equations 30 and 31

specify that the average inplane shear forces are zero at the

boundary.

C. PREDICTION OF RESPONSE IN SURFACE PANELS

In order to assess the fatigue life and estimate the reli-

ability of thermal surface protection systems, dynamic response

in the form of deflection and stress is needed. For linear

systems, response calculations can be obtained either in the time

or frequency domains. The power spectral density (PSD) method is

commonly used to obtain solutions for a frequency domain

approach. For a time domain analysis, the simulation of random

input pressure, as described in Section II A., and numerical

integration procedures must be utilized. When the response is

14



nonlinear, a time domain Monte Carlo type method can be developed

to obtain deflection and stress response solutions (References

11,24,25,28,36-42).

In the present study, the time domain analysis is verified

for a linear case by a direct comparison of the response predic-

tions to those obtained by the PSD procedure. Then, a detailed

study of nonlinear response using a Monte Carlo time domain

approach is developed.

In addition to the very high noiF,• levels that will be acting

on the surface of the NASP-type veh<zies, the surface tempera-

tures are expected tc exceed 3,000'F (Reference 26). Such high

temperatures will induce large thermal stresses and instabilities

(buckling) of the surface panels. However, the thermal effects

and inplane loads are not considered in Phase I work.

1, The Power Spectral Density Methnd

Consider a rectangular panel, shown in Figure 1, exposed

to a random pressure p(x.y.t).

For a homogeneous panel, the governing equation of motion

for small deformations can be written as

D 4V4 j+ tr+mw M p(xyt) (36)

where

D V7 - D 11 dla/x4 + 2(D 12 + 2D )a 4/dx 2aY 2 + D22 d4 /dY 4

DI"-Ellh /12(l - v 12 v 2 1 )

D 12 = V2-v1 D11

D2-E 22 h3 /12(l-v1 2 v21 )

D6- G12 h 3/12

15



in which Ell, E 22, G12 v, ', and m, are moduli of elasticity,

Poisson's coefficient, and mass per unit area,

respectively. The solution for panel deflection can be expressed

as a superposition of ý,rthogonal modes as

S.... *.•. w(x,y,t)- Z Zq,,.(t)X.(x,y) (37)

where q, are the generalized coordinates and X. are the modes.

Taking the Fourier transformation of Equations 36 and 37 and uti-
lizing orthogonality, it an be shown that

(38)

where the frequency response function

H,.."(W~ ~2 +2~w"2 2
(39)

and the generalized random forces are

P.,. 0f p(Xy, o)Xmn(xy)dxdy (40)

in which a bar denotes a transformed quantity. The modal damping
coefficients t and the natural frequencies of panel vibration-

can be determined from

-. ,. = 0(u ii/W .) (41)

2 (D p/M p)V 4 Xmn/X (42)

16
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where to is a modal damping coefficient (percent of critical

damping) and y is a parameter based on experimental data. For a

stationary and Gaussian random pressure input p(x.y,t), the

deflection response spectral density can be determined from

(Reference 43)

* ~ •
S.(X, y, z z Hir, ' HrtSmar'XmnXrI (43)M-I r-I n-I 1-1

where

S"W Jo J Jf J SP m(, fl,W)X,.(Xi, Y I)Xr(X 2 , y 2)dxldydX2 dya
(44)

where an asterisk indicates a conjugate quantity.

The orthonormal modes for a simply supported panel are

X.,,(x , y) -2hsin(mrnx/a)sin(nity/b) (45)

For a clamped-clamped panel, a rough approximation of the modes
can be obtained by using clamped-clamped beam modes

Xmn(X,Y) -Xm'(X)Xn'(Y)

(46)
where

17
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cs /-)+icmcoshy, x/a-2)

XmXm - odd

Siny. x/a- 2) + K sin hy mnx/a- 2)

m r- even (47)

The values of the constants Af, y,¥* and %. can be obtained from

Table 1. Then, for a simply supported panel and uniformly dis-

tributed random pressure where Sp(•,( w)-S(w), the cross-

spectral densities of generalized random forces are

4S(w)ab
"MU mnl (48)

For a clamped-clamped panel

16S(w)abmaQr-•a.--I

SM , ,- - [ -- " (49)

Stresses in a thin panel undergoing linear deformation
can be calculated from

18
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TABLE 1

CONSTANTS FOR CLAMPED-PLATE MODES

m A. •

1 0.7133 4.730040 0.132857 0,982

2 0.7068 7.853202 -0.0278749 1.000

3 0.7071 10.9956L. -0.00579227 1.000

4 0.7071 14.137164 0.0012041 1.000

5 0.7071 17.278758 0.002603 1.000

>5 0.7071 y,(m-5)n 1.000
2

sinh 2
I-

12D 11---- z•d=w/•x 2 +v, 2 d=w/dY2 ) (50)

12D22o, h3  z(d 2w/dy2 +v1 2 d'wldx2 )
"oy- (51)

12D•
ry h 3  (52)

where ax and a, are the normal stresses and x., is the shear

stress; z is the distance from the mid-plane of the panel.

Taking the Fourier transformation of Equations 50-52, using Equa-

tion 37, it can be shown that the spectral densities of the

stress components at the surface of a simply supported panel are

S(x y.) •. IHI 2 [((mn/a)2ev12 Cnn/b)2]. 'S"X 1
h'~ n- - (53)
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S,,(XYW) [ H,.I I I"l C(mn/a)2 nn2b '['rxAX• (54)

h , -un-I (55)

Equations 53-55 were obtained under a condition that the cross-

modal terms can be neglected and the cross-spectral densities& of

the generalized random forces are determined from Equation 44 by

setting rm-r and n-I.
The root-mean-square (rms) values of displacement and

stresses can be calculated from

rms - Sj(x, y, w)dw]5
f (56)0

where SA is the response spectral density given in Equation 43

for displacements and Equations 53-55 for stresses.

2. The Time Domain Method

To solve Equations 19 and 20, panel deflections are

expanded in terms of panel modes:

w(x.,y,t)- Z ZA,.(t),.,,,(x,y) (57)

in which A .... are the modal amplitudes and *.m are the natural

modes corresponding to a linear panel. For a simply supported

panel, *mn may be written as

MW I,2,3,...

n•1,2,3, (58)

20



where X.,-cin(mnx/a) and Y.-sin(nny/b)

Substituting Equation 57 into Equation 20 yields:

l•F 1 J4F 1a 4 F V r+3T
22aX-- (a+ 2Lz.-- -- 4-+ VaNi+ V

241

(;n_____ +m r)nx ________rLnx n-~n

*.$nr - ms)[Cosmrx Cos + 4Corae-
a O b a bns~y

(m_______ (n -s)ny (m -r)nx (n'-s'n 1

+ .(nr +ms)FCosCosm +~x0  4Cos o
b a b (59)

The solution for F consists of homogeneouA Fh , and particular

solution, F9 . The particular solution fox- F can readily be

obtained from Equation 59 by following the procedures given in

References 10 and 35:

%2 tnrom

F P= ) Z ZZZAmnArms(nr-ms)
P 4 M a r

(m+r)WX (n.A÷)Xy (m-r)xx (n-8)KyCos Cos Cos 0 cos{a bOs b, T 1 2

2+

+-f~YYEAmA ms(nr+ms)

( C(+ r)KtX (n-#)Ky (m-r)EX (n*#)Xy

a b +a b
.{C~ COSCos(60)

where
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a,, a2
a22 4+a, + 2 12a (in- r) 2 (n- S)2

F h bh

4)

a,, aa 4

+r 66 12~sm).n-s

h b4

12 2

w, ~ ~ at thaont~~o nerto r

(n- s22



2 iM n2)

CIM Jn 22 2m - la ,2 (63

C 3 =0 . (65)

Having completely determined F, Equation 19 is solved using the

Galerkin method by computing the integral average of Equation 19
weighted by each term of Equation 57. The natural frequencies of

the panel obtained by the linear theory are imposed into Equation

19. Since *mn are the natural modes of the panel, then

_____n d 44mn n2D x 4 "2(D 1 2 +2D 66 )x y 2 (66)
aX4 a~dy2'4 in MO..m(66)

in which w, are the natural frequencies of the undamped linear

system. Substituting F-Ff+Fp and w as given in Equation 57 into
Equation 19, and utilizing the Galerkin type procedure, the fol-

lowing system of nonlinear differential equations are cbtained

A +C AJW 2AI+ An..ab.

" ) 2 a , • - a'a"2-2, a 12,- a . k L
a~la 2 2 - 2 a al 1a22-a"*[~ 2( a 12~i a2 aiia ka2),

+..eAjoAA,.,Z,,dv,,,,,.=Qu(t) (67)

64b du a •m n r ,

23



where W,, are the natural frequencies of a rectangular panel.

The generalized mass and the generalized random forces are

a b

Mjj=Mmf f02 (X, Y) dx dy (68)
0 0

a b

QI,(t)- pr(XYt)O(XY)dxdy (69)

The nonlinear stiffness coefficients Z•gfkr,• are given by

iqdfmkr - (kr- ml)[FjqdfmkrL(m-rk+-s( 1)+ F iqdfmkrI(m r k- 1)]

4.(kr+mI)LFLqtfmkrL(m- r~k+ 1)--Ftqdfmkri(M+r~k- 1)] (70)

where

Fqdf•rkr(G, H)- 2GHd[fI3(i+dG)+13(i- d.G)][I3(q+ 1, H)

+ [3(q- fH)]I- (H 2 d 2 + G 212) 1y(i±d.G)

-y(i-d,G)][y(q+ I,H)-y(q-fH)]}/D(G.H))

where

-- a22. 4 a 66 +2a 12 aG2 H2 all a H4

h + h h b 4

and
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Fuqidmkrr(G H)" {Fsqd•,krl(G,IH), otherwise

/- 1, jk'

0, ot11ervis.e~
1 j -kO-

f3(jtk)- -I j--k,,O

0, otherwise

Before step-by-step numerical integration can be implem-

ented for the coupled system of nonlinear differential equat3.ons
given in Equation 67, the time histories of the generalized

random forces Q,1(t) are needed. This is achieved by first simu-

lating the multidimensional random pressure pr(x,y,t) in space-

time domain and then evaluating Equation 69 numerically for each

value of indices L.J . Following the procedures given in Refer-

ences 23 and 31, the stationary random pressure pt(xyt) can be

simulated as given in Equation 3.

An alternate procedure to generate the generalized random forces

Q,I(t) is to substitute Equation 3 into Equation 69 and evaluate

all integrals in closed form. The generalized random forces are

then simulated as multi-variate random processes (R&ferences

31,32). If the pressure distribution is uniform over the panel

surface, the simulation procedure reduces to a single variate and

one dimensional random process.

The displacement and stress response time histories are

developed for one realization of the random input pressure

p'(x,y,t). These solutions would need to be repeated for a number

of different realizations and then the response statistics calcu-

lated using ensemble averags s in a Monte Carlo sense. However,

by assuming the input pressure to be an ergodic random process,

it is sufficient to obtain a solution for only one realization

25



and then use temporal averaging to calculate the required

response statistics. Then, the mean and the rms values of the

displacement can be determined from

w(xIy)• fw(xy,t)dt (71)

T.

Wrma(~ ~ w2(X~ytctw•V(xy) Y w (xy,t)dt
o T(72)

where T is the period of the simulated time history of input

pressure. Similar expressions can be developed for panel
stresses. The root-mean-square values calculated from Equations
56 and 72 should yield the same results.
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a 2 2 2 a 1 22_ _ __, t m a2. 
.(

In) "a atjan- a• 2 a2-alla 22 -a 2  b2

m a b al 1aL.-a 1 2  a -c2 , -.- al b2

--- •Z kZA AArvms(nr-ms)

(m~r)ogx (a)K

b TI,

)2CO COS 6

ma rasrnms

(m-r)KX Cn,÷,),ay \(72 2
*((b) Zmr~ (nA)Kys~ s

(n S) 2 COS )mrn
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ary(x~yt,zt)=--~ EYAm 7t2 a2 ai 1~a2 b2)

mn ny a22 2 a 12 2 i 2 )

mna b (a,,a2-a12 a aal-a,221

y Z ZAm,A ms (nr-ms)

)2O(m~r)3tx~ (m+*)oLy

(M+rycob

f m-)~x (n-v)sty
+ m- r)2OS m-rnxCos b

_n* (a ZA nAr,fs(mr+fls)

rJ 2rCo S (mr)n COS bn

.((MrCO a CSb

a T21



mxx nly (______ in n 2 \
TH X .Z )_j2Z Aii"snAY a n2 a 12 2A2)a~ajja=-a 1 2 a2 allan-a 1 2

E A.aArams(nr-rms)

,(((m-+r)(n-s + cOSLcs.j, rab t T1 1

.{((n-s)Cm+r) )CO5•CO5
Ca-r)nx (mSe Y~

+ ( (n-)(m-r) )COS 4COs -b
ab T 1

rib Tal(.(n ÷s) Cm. n - r ) COS - -6 - cos -Z "-•

T n (7 6)

D. SONIC FATIGUE OF SURFACE PANELS

The key elements in predicting the fatigue life of a struc-

tural component to random loads are detailed stress load spectra

at a critical point on the structure and reliable cumulative

damage rules for random stress amplitudes. For a multidimen-

sional stress state, the most damaging stress components must be

known as well as the choice between the nominal stress and the

actual load stress in complex geometries and connections. The

load spectra is a function of mission requirements, flight condi-

tions, and flight duration. The information on threshold cross-

ings and peak exceedances is needed for the development of stress
load spectra. In addition to this information, stress data in

the form of S-N diagrams are required. Such data are usually

obtained from coupon testing under constant amplitude loading and

are approximated by the following equation
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NS". (76)

where S is a fixed stress amplitude for constant alternating
loads N is the number of stress cycles until failure at the

stress level S. and X and B are material constants depending on

the material.

Since stress response of surface panels is random, fatigue

data from random tests should give the required information for

life predictions. In this case, the stress response S is repre-

sented as the root-mean-square (rms) value and the number of

cycles N correspond to cycles of a frequency at a dominant

response peak. For a linear and narrow band Gaussian response,

reasonable predictions of fatigue life can be expected using this

approach. However, under severe acoustic and thermal environ-

ment, the stress response is nonlinear and non-Gaussian. Fur-

thermore, for most practical applications, fatigue data under

actual random inputs are rarely available for full scale struc-

tures or structural components. Most of the fatigue data
digested into the S-N diagram form are for coupon specimens underI dconstant amplitude loading. This information, together with the

distribution of stress response peaks, can be utilized to con-

struct a life prediction model for random stresses.

"Consider that the number of fatigue cycles is equal to the

number of positive stress peaks, or stress reversaiw, and that

each damage occurs at each positive stress peak. Then, according

"to the Palmgren-Miner linear cumulative damage rule (Reference

44), the total cumulative damage can be written as

D= n(S,)/N(S,), (77)

where n is the number of stress peaks (cycles) experienced by the

structure at stress level S, , and N is the number of cycles at

which failure occurs. Fatigue failure occurs when D reaches a

value of unity. Substituting Equation 76 into Equation 77 gives
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-D-• n(S,)S•,)" (78)

"•I To account for positive peaks that occur in the rnegative streso

region and add to the cumulative damage, Equation 78 can be

modified to

+. ~ ~ ~ D-B n(S,),S.,1J

Since stress response is a random quantity, the expected damage

in the time interval T can be written as (Reference 43)

E[MT]• .t
E[D(T)]- B ISIlP,(S)dS (80)

where E[MT] is the expected total number of positive stress peaks

and P b(S) is the probability density function of the peak magni-
rude of the random stress process. The expected total number of

•d peaks can be estimated from (Reference 43)

E[MT]-f f P.i (s,O,§)dds (81)
f f

where P,. is the joint probability density of S(t) (stress), -(t)

(stress velocity), and a(t)(stress acceleration).

1. Linear Stress Response

The response of a linear system to a Gaussian input is

also Gaussian. For a stationary Gaussian random process, the
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probability density P. and the joint densities P. , P,6 are

known. Then, the expected number of total peaks and the density

of peaks can be evaluated in closed form (Reference 43)

1

2o2 (-4)
as s

where 0,, o, oa are standard deviations of S(t), -(t). S(t) and the

parameter a is

a-0r/01 0y (84)

If the spectral density, S.(w), of the linear stress process S(t)

is known,
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- [, 2 S (w)dwl

AI,

a. -j J 2S,(w)dw]

,?0m- fW S#(W)dW] ( 85)

The standard deviations a., aj, and ag correspond to the principal

(maximum) stress in the panel. Two limiting cases of peak dis-

tribution can be obtained for a- I and a-O. A value of a -1

corresponds to a narrow band process and the peak distribution

reduces to the well known Rayleigh distribution while for very

small a. Equation 83 may be approximated by a Gaussian

distribution.

For the case of narrow band stress response a-1. the

expected number of peaks per unit time reduces to

E[MT1]- E[N.(O)] - (86)

where E[N.(O)] is the expected rate of upcrossing of stress

A process S(t)at zero threshold level. The distribution of stress

"peaks is that of Rayleigh distribution

P ,(s) C 0_5,S,<oa* (87)
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The expected damage can be obtained in closed form from Equations

80, 86, and 87 as

B (88)

where

r(y) =2.j x2Y-e- dx, Y>O (89)
0

is the Gamma function. For a single degree of freedom response

the expected upcrossing rate E[N÷(O)] can be replaced with the

natural frequency Jo (cycles/sec) of the surface panel. For the

cases where many modes participate, the single mode approximation

is not valid and expected damage should be calculated using Equa-

tions 80, 81, and 83. In this case, it is difficult to obtain a

closed form solution and a numerical procedure is used to evalu-

ate the required integrals. The expected total damage in the

interval from '-O to c-T (a selected time period) can be

obtained from IE[D(x)]d- . For a stationary random response

process, E[D(T)]-TE[D(Dv)]

As shown in Reference 39, the expected damage E[D(T)]

does not change by much when plotted versus -tMr]T for a ranging

from 0.25 to 1. However, for a wide band process (a<l) the total

number of stress peaks, E[Mr] , is much larger than for a narrow

band process (a-I). Thus, fatigue time to failure at E[D(T)]-i

will be shorter for a wide band response. or example, for an

extreme case when a is very small, distribution of peaks may be

approximated by a Gaussian probability density

34
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Ps) e(-92/20!) < <S < <OD

7M (90)

Then, from Equations 80 and 89

E[D(E)]- E[Mr] r( (91)

Since E[MrT]>E[N.(O)],, (a,),)>(a,)., where the subscripts w and n

indicate wide band (many modes) and narrow band (single mode)
stress response, the expected damage for a wide band response

will be larger than for a narrow band response. However, except

for these extreme cases the peak distribution of a stationary
Gaussian random stress process is neither Rayleigh nor Gaussian.

2. Quasi-Nonlinear Single Degree of Freedom Stress Response
Approximate solutions for expected fatigue damage can be

developed by assuming the nonlinear panel response to be domi-

nated by a single mode, reducing the nonlinear equations of panel

motions to a Duffing's type equation and using a linear stress-
strain relationship. Such a procedure might not produce meaning-

ful fatigue estimates of a realistic surface panel, but it could

give preliminary guidelines on the effect of nonlinearities. If
the inplane motions of a panel are constrained at the edges, the
governing equation might be approximated by (Reference 45)

SDV/w- rM Ac 2 (d 2 w/dx 2 + d 2 w/ dy 2 ) + c tw

+MnP'b- pXx y t)(92)

where
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a b

A 2 a J-W (93)

and c is the wave speed

2 E

p( -V 2 ) (94)

where p is the material density and v is the Poisson's ratio.

For simple support boundary conditions and single mode

approximation

w(x,y,t)-q(t)sin(itx/a)sin(ny/b) . (95)

Substituting Equation 95 into Equations 92 and 94, and utilizing

orthogonality gives

j+2ý0 w 1 q+0) 1 (q+ yq 3 ) P(t) (96)

where

a b

P(t)'r f P(xyt)sin-sin zdxda (97)
mabf f a b(7

P 0 0

y-3/2h 2  . (98)

For a uniform noise pressure distribution over the panel surface,

16
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Stresses in the panel (linear stress-strain assumption) can be

calculated from Equations 50-52 in terms of the generalized coor-

dinate q(t). At z-*h/2 and the middle of the panel (x- a/2,

y-b/2)1 C,,-O and ýhe principal stress is the larger of a. and

vy .Then, the principal stress S(t) can be related to q(t) as

S(t) Aq(t)
(100)

where

'A E v(Eh/b)2O
2(1 - V)

A Eh 2 2 (101)A2(1_-v

It should be noted that Equation 100 is a crude linear approxima-

tion to relate stress and nonlinear displacement. Then, Equation

96 can be written as

2(102)

where W(t) is assumed to be a Gaussian white noise in which

16A yand E A2  (103)

The approximate solution for probablility density of peak magni-

tude was obtained in Reference 43
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3 1 ~~2t~w 1  2 '2< 0 ) I
2 PAoS)(S+S3 +- es2+sS/4]j (104)

n_(S)- __k

and

( 16A '•
I- 2 S-W (105)

where Sw is the spectral density level of the Gaussian white

noise aproximation. Since the standard deviation of linear

stress response is

=*- [2 k/(2•ow 1 ) ] '6A S1 .i (106)
0 -[Tt-/22ow~jj

Equation 104 can be written as

PAS) -- (S + ES 0-<S< . (107)

Substituting Equation 107 into Equation 80, the expected damage

for the simplified nonlinear system can be determined from

E[MT]tr 2*.2 2o,2 (108)E[(';) -(S +C ES+)e dS

0

The expected number of total peaks per unit time for a narrow

band approximation can be coputed from (Reference 43)

E[MT])CW2 102 (109)
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where the constant C can be evaluated from the normalization

condition

where P~ is the joint density function of the nonlinear stress s

and stress velocity t

[ 22
P8~SS Ce(~~* 2 ( 11

Substituting Equation 111 into Equation 110 and integrating

(Reference 43)

____Cix($ 2  (112)

where K, is Bessel's function of the second kind with imaginary

AwzF arguments. To the first order in c, the equation can be approxi-

mated as

2 (13

C~~2 In1 o~% - e E!(113)
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For linear response e-0. and E[MTJ-E(N.(O)]-wll/2n.
To evaluate the expected damage from Equation 108, numer-

ical integration procedures can be utilized. The Equations 108

and 109 correspond to nonlinear deflections of the panel with

linear stress-strain relationships assumed. If the stress-strain

relationship is nonlinear such as

S= Dix+ZD.xn
n-2 (115)

where D, are proportionality constants, difficulties would arise

in obtaining the joint density function P, and the peak density

function P1 (s). For n-2, closed form solutions were obtained for

P.s, E[Mr] and P 1(s) in Reference 43.

The procedure presented in this section can be applied to

estimate the fatigue life of simple narrow band single-degree-of-

freedom systems. The linear and the nonlinear response of

surface protection systems to exhaust noise and supersonic-

hypersonic turbulent flow will be composed of many modesl and

simplified models presented could lead to erroneous fatigue life

estimates. However, these procedures could serve as useful

guidelines for the more realistic fatigue life estimates of

multimodal nonlinear systems.

3. Nonlinear Stress Response

For a nonlinear random stress response, the amplitude

distri~ution is non-Gaussian. Furthermore, the spectral density

of stress response exhibits a wide band characteristic indicating

that a large number of modes could be contributing to the

response process. An improved damage model for nonlinear stress

can be constructed by computing the histograms of stress peak

distribution directly from stress response time histories and

then using Equation 80 to predict fatigue damage. The total

number of peaks per unit time E[MT] also can be evaluated numer-
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ically from the response time history. Such a procedure has been

used in References 38-42 to determine fatigue life of stiffened

titanium panels at room and elevated temperatures.

The histograms of peak distribution and the total number

of peaks could account for the stress overloads, pressurization

loads, persistent stress reversals due to snap-through, oil

canning, etc. However, the fatigue relationship given in Equa-

tion 76 corresponds to either a conutant amplitude stress or a

root-mean-square stress of a stationary process. Furthermore,

the linear damage superposition from Equation 77 might not be

valid for the severe loading cond..tions to be encountered by the

surface protection systems. For metal materials and low cycle

fatigue, significant improvements have been made in predicting

the life of a structure by utilizing fracture mechanics and time
domain stress solutions (Reference 46). However, for high cycle

fatigue, the crack propagation stage might be relatively short as

compared to crack initiation, and the time domain crack growth

solution might not be meaningful in assessing the life of a

structure. Additionally, for composite materials no reliable

theory seems to exist for predicting crack growth as a function

of random stress response.

E. COMPUTER PROGRAM DESCRIPTION

The primary objective of this research has been to demon-

strate that the use of a Monte Carlo simulation of a random

process can be integrated into dynamical equations of motion to

produce a time domain response predictive approach to understand-

ing the fatigue of panels exposed to acoustic and sonic noise.

The theoretical equations of the time domain approach presented

in Section II C. 1. have been programmed using FORTRAN, and the

resulting computational procedure is called TDR (Time Domain

Response). In this section, a brief explanation of TDR will be

presented. Appendix A of this report contains a FORTRAN listing.
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TDR is written to handle the time domain response analysis of

a simply supported rectangular panel subjected to uniform random
pressure. Once TDR has been successfully executed, an output

file (FOR001.DAT) is created which contains the time response

history of displacements and stresses. That file becomes input

to another program, PDF, which calculates the probability density

functions of displacement and stresses and up-crossing rates. A

schematic of these programs and their relationship to each other

is provided in Figure 2. The files created by PDF can be read by

various graphical display devices to produca plots of statistical

quantities of interest. The fatigue life of a panel is computed

with the computer program DAMAGE1 which uses as input the output

file FOR008.DAT from PDF.
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RE8ULTS'

Earlier sections of this report have discussed noise

sources, their interaction with structure, especially light-

* weight panels, and methods for determining structural response

under acoustic and sonic noise inputs. The primary objective of

the present research is to use Monte Carlo simulation techniques

to model random noise in such a manner that the response of a

panel can be examined in the time domain. The validity of the

time domain approach is verified by comparison to existing

methods and/or experimental data. In the present research the

lack of experimental data necessitates the former manner of

verification.

Since existing methods of sonic fatigue prediction rely upon

linear strain-displacement relations, the theoretical derivations

in the time domain presented earlier were reduced to equivalent

linear analysis. The results from the linearized time domain

method is then directly comparable to the power spectral density

approach. The results of that comparison are provided in Section

III A. which is concerned with isotropic plates.

A significant advantage of the time domain method presented

herein is that it can be extended to the regions involving both

nonlinear kinematic and nonlinear material behavior. For pur-

poses of this research, nonlinear kinematic relations were used

to model the strain-displacement behavior of the flat panel. The

nonlinear strain-displacement relations allow the modeling of

inplane stretching in the panel--a phenomenon which is extremely

critical to the prediction of fatigue in panels exposed to high

levels of acoustic noise. Demonstrations of the importance of

this modeling assumption are provided for both isotropic and

orthotropic composite panels in the sections to follow.
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The extension of the isotropic derivations to the composite

idealization is important and underscores the versatility and

adaptability of the time domain method. While not addressed in

this research, the role of transverse shear and material nonlin-

earity in the matrix material is an important behavior which will

be examined in future Phase II work.

The results presented herein are comprised of time response

histories of displacement and stress, probability density and

peak distribution histograms, up-crossing rates, and predictions

of sonic fatigue life for both isotropic and oz :hotropic compos-

ite panels.

1,1 A. COMPARISONS BETWEEN THE TIME DOMAIN AND POWER SPECTRAL

DENSITY METHODS (ISOTROPIC PLATES)

As an example of the veracity of the time domain approach,

the nonlinear response and fatigue life of a simply supported

panel made from 6A1-4V titanium material is predicted. The panel

shown in Figure 1 is assumed to be exposed to a uniformly dis-

tributed stationary Gaussian random pressure for which the trun-

j' cated spectral density is given in Equation 18. All the analyses

presented here are obtained for lower and upper cut-off frequen-

cies of 0 Hz and 500 Hz, respectively. The selected frequency

bandwidth was Aw-2it rad/sec (1 cycle/sec) with the input levels

of the random pressure prescribed in decibels. For example, a

uniformly distributed white noise spectral density of 140 dB over

a frequency range 0-500 Hz corresponds to an overall sound pres-

sure level of 167 dB. If the upper cut-off frequency is

increased to 1,000 Hz, the overall sound pressure level would

increase to 170 dB.

The random input pressure p(t) was simulated from Equation 11

with M3M M-4,096, N 3 -512, and At-0.0O025 second. Thus, the

length of the simulated process is 0.00025 second x 4,096 = 1.024

second. The fundamental frequency of the metallic panel selected

""• for this study is about 100 Hz and the fundamental period is 0.01

second. Thus, the simulated process covers about 102 natural
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periods of the panel. It has been shown in previous studies,

that for a stationary response, reasonable statistical properties

can be obtained from a time history which extends for about 100

natural periods of the structure.

The numerical results were obtained for a panel with the fol-

lowing geometric and material properties: a = 20 inches, b = 8.2

inches, h = 0.05 inches, E = 16.0 X 10' psi, v z 0.34, m,-pph ,

p,. = 0.000414 1bj-rec 2/in'. The modal clamping coefficients were

obtained from Equation 41 with y = 1 and to = 0.02. The numer-

ical calculations were obtained for thresj modes in the x direc-

tion On-1.2.3) and cne mode in the y direction (n-1). It should

be noted that for a uniform input pressure distribution only the

odd nodes contribute to panel response. The modal frequencies of

the simply supported panel are w 11 -620 rad/sec (98.7 Hz) and

w - 1, 333 tad/sac (212.2 Hz).

When the panel response is calculated in time domain, the

spectral densities of displacement or stress process Z(x',yt)j

where x" and y* are the selected spatial points on the panel, can

be obtained utilizing the Fast Fourier Transiorm (FFT) technique

(Reference 32). ThL finite transform of Z(x*,y*,t.,) at discrete

frequencies auk can be written as (Reference 32)

Z ( Y s I 1 2 m m
Z(x ,y ,wA) - Z(x y,t)e h (16)

n-O

k- 1 ,2,...,M

in which T, is the total duration of the response random process

and ti- nAt with At being the time interval. Then, the FFT numer-

ical estimate of the response spectral density is

o I2At y(x ,y , jSy',o• - M(117)
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The numerical results presented in this section correspond to the

center of the panel, i.e., x* a 10 inches aald y* = 4.1 inches.

Stresses are calculated at z-h/2 (top surface of the panel).

The displacement response time histories at different levels

of input sound pressure are shown in Figures 3 and 4. For an
80 dB (overall = 107 dB) pressure input, panel response is linear

and the largest peaks reach about 0.01 inches. At 120 dB and

higher levels of input pressure, panel response is nonlinear with

peaks reaching about 0.26 inch for 150 dE (overall = 177 dB)

input. As can be observed from these results, the character of

the random response process changes with the increasing degree of

nonlinearity. It should be noted that the mean value of dis-

placement response is zero for the linear and the nonlinear

cases.

The ov stress response time histories are presented in

Figures 5 and 6 for several different levels of input pressure.

For the geometric conditions chosen for these numerical examples,

the shearing stress v.,-O and the normal u.. stress is about one

half the value of the a7 stress. Thus, ao is the principal

stress.

For an 80 dB sound pressure input, panel response is linear

and the time history of stress response is similar to the dis-

placement response. However, as the input levels increase and

the panel exhibits nonlinear vibrations, the stress response

changes to a wide band process. Furthermore, the mean value is

not zero and it increases with the increasing sound pressure

input level. The mean values of stress response corresponding to
input levels 80 dB, 120 dB, 140 dB, and 150 dB are, respectively,

0.04 psi, 431 psi, 5,418 psi, an] 10,080 psi. The mean stress is

caused by the inplane stretching of the nonlinear panel.

The nonlinear transformation between stress and displacement

(Equations 73,74,75) contains quadratic terms of the displacement

component w ° With the increasing degree of nonlinearity, these

quadratic terms tend to domina-e the stress-displacement trans-

formation process. These effects are clearly evident in Figures
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5 and 6. For the sound pressure input of 150 dB (177 dB

overall), the stress peaks reach 67,000 psi. It should be noted

that even these high stress values are below the yield strength

(120,000 psi) of the titanium material.

The root-mean-square (rms) displacement and normal stresses

are plotted in Figures 7 and 8 versus the rms of the input pres-

sure. The linear response predictions were obtained by the power

spectral density (PSD) and the time domain methods. In the time

domain approach, the governing equations of motion and the

stress-displacement relationships were reduced to those of a

linear problem. However, the simulation of the random input

pressure and the solution procedure of the governing linearized

equations were identical to that of the nonlinear case. As can

be observed from these results, the agreement between the PSD

method and the time domain approach is very good. For example,

at an input level of 140 dB (167 dB overall) the rms displace-

ments and stresses are: w,, = 0.314oinch, 0.306 inch; a.. =

14,30U psi, 13,900 psi; u = 26,760 psi, 26,020 psi (PSD, time

domain).

It should be noted that these linear response predictions

overestimate the actual nonlinear response by a large amount.

This can be seen from the results shown in Figures 7 and 8. For

the input levels exceeding about 110 dB (137 dB overall), nonlin-
ear analysis is required for displacement and stress response
predictions. This input limit corresponds only for the simply

supported 20 inch by 8.2 inch by 0.06 inch titanium panel exposed

to uniform random noise pressure. For stiffer panels this limit-

ing input pressure value would increase while for less stiff

panels it would decrease.

The response spectral densities for deflection and normal

stress a are shown in Figures 9-11. At low input levels (80 dB

and 100 dB) where response is linear, distinct peaks can be seen

at the modal frequencies of 98.7 Hz and 212.2 Hz. Furthermore,

similar characteristics can be seen between the spectral densi-

ties of displacement and stress. As the input pressure
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increases, the distinct'peaks that are characteristic of linear

vibrations tend to flatten and shift towards higher frequencies.

For an input level of 140 dB, the distinct peaks are no more

evident and the response spectra tends to exhibit the character-

istics of a wide band random process. In addition, the shape of

the displacement and stress spectral densities is different. The

spectral densities shown in these figures are the unamoothed

outputs of the FFT of the response time history corresponding to

one solution realization.

When the random process possesses wide band characteristics,

large fluctuations of the FFT output are typical. To improve the

FFT inverse calculations, a larger number of simulated points and

smaller time steps should be taken. In addition, the response

spectral densities should be calculated for several realizations

of the random input pressure. These spectral densities are then

averaged to obtain the response spectral density.

Displacement or stress response probability density histo-

grams, peak distributions, total number of peaks per unit time,

and threshold crossing rates can be obtained from the response

time histories. Figures 12 and 13 show the probability density

and peak distribution histograms for the nonlinear displacement

response. For comparison, a Gaussian density function is given

with each probability density histogram and a Rayleigh distribu-

tion with each histogram of peak distribution. As can be

observed from these results, the nonlinear response is no longer

Gaussian and the peak distribution does not follow the Rayleigh

distribution.

Similar results are presented in Figures 14 and 15 for normal

stress component vy, . For the nonlinear stress process, large

* differences can be seen between the response histograms and the

theoretical probability and peak distributions. These large dif-

ferences are produced by the nonlinear relationship between

stress and displacement. Thus, the various approximate theories

which predict the nonlinear displacement response but use a
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linear stress-displacement relationship to obtain stresses do not

give a meaningful procedure to obtain nonlinear stresses for

sonic fatigue analysis.
.Alf From the results presented in Figures 13 and 15, it can be

seen that for a highly nonlinear response the stress process con-

41I tains a large number of peaks above the 20 (d = standard devi-

ation) range. However, the histogram of displacement peak

distribution does not show any peaks above the 2.2 ca range. Here

the peaks seem to be concentrated at about the 1. 5 a value.

Since fatigue life is very sensitive to the magnitude of stress

ranges, erroneous fatigue life predictions will be obtained if

Ar the form of the stress peak distribution is assumed to be the

same as the displacement peak distribution. In addition, the

nonlinear stress process contains a mean value while the mean is

zero for a nonlinear displacement response.

The threshold up-crosning rates for the cy, stress process are

given in Figure 16 for several levels of input pressure. For a

linear stress response at 80 dB input, the threshold up-crossing

rate closely approximates a theoretical Gaussian prediction. As

nonlinear, the up-crossing rates increase.

The expected fatigue damage has been predicted utilizing

Equation '18. The expected total number of peaks E[.Mr] were esti-

mated directly from the stress response time histories. The

values for EEMr] are 150, 228, 556, and 748 peaks/second for 120,

130, 140, and 150 dB sound pressure inputs, respectively. The

integral in Equation 78 was evaluated numerically. The distribu-

tion of stress peaks P1Cs) is the histogram of the peak distribu-

tion corresponding to the principal stress a., (Figures 14 and

To illustrate the fatigue damage estimation procedure,

typical parameters were chosen from experimental data for the

titanium material under room temperature. These parameters cor-

respond to tests at constant stress amplitude and stress ratio
R--1. The stress ratio R is defined as Ra 1 /. in which a.,
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is the minimum stress and a... is the maximum stress. A stress
ratio R-- I corresponds to a zero mean value. The experimental

parameters chosen in this study are X- 6.0 and B- 1.518X 104. When
using these parameters, the stress amplitude is in units of ksi.
To account for stress concentrations, size effects, and manufac-
turing imperfections, a fatigue reduction factor Kp, should be

introduced. However, for the simple panel chosen in this study

no fatigue reduction factor was introduced.

The expected fatigue damage is plotted in Figure 17 versus

the product of E[Mr]t . A value of E[D(v)]-O.1 corresponds to 10

percent damage and E[D(*u)]- I a 100 percent damage or total
failure of the structure. By selecting E[D(,C)]-l and the calcu-

lated value of the total number of peaks E[Mr] , the time to
failure can be obtained from Figure 17. These results are given

in Table 2.

TABLE 2

STANDARD DEVIATION OF a. STRESS,
EXPECTED NUMBER OF PEAKS AND FATIGUE LIFE

Number of Standard Fatigue
Peaks/Second Deviation, psi Life, Hours

Input Sound
Pressure, dB Linear Nonlinear Linear Nonlinear Linear Nonlinear

120 (147) 124 150 2,676 2,298 2.39 x 106 938,888

130 (157) 124 228 8,462 3,69.7 2,393 15,578

140 (167) 124 556 26,760 9,260 2.393 18.7

150 (177) 124 748 84,622 14,100 --- 1.0

( ) =Overall levels

When the stress response analysis is performed using a linear

plate theory, the stresses can be calculated by the PSD method

and the expected fatigue damage estimated from Equation 86. The
results based on linear theory are also presented in Table 2.

These results indicate that for input levels above 120 dB (147 dB

overall) the linear theory over estimates stress and under esti-
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mates fatigue life of surface panels. For sound pressure inputs

of 120 dB or lower, the titanium panel would not fail by fatigue.

Th fatigue life estimates presented in this report should be

viewed as preliminary merely to illustrate the procedure of the

time domain analysis.

B. PREDICTION OF RESPONSE IN ORTHOTROPIC COMPOSITE.PANELS USING

THE TIME DOMAIN MHOD

In this section, representative examples of the predictive

capabilities of the time domain approach for application to

orthotropic panels is presented. For the most part, the examples

provided are analogous to those shown for the isotropic panel of

Section III A. However, examples showing the effects of varia-

tion in lay-up angle have been included to demonstrate the

design/analysis capabilities of the time domain approach.

A subtle but important distinction between an orthotropic and

laminated composite material should be noted; namely, for pur-

poses of this Phase I research, the orthotropic derivation

implicitly assumes that the entire plate is composed of a single

material possessing orthotropic properties, as contrasted to a

laminated panel wherein orthotropic properties generally vary

throughout the thickness. This assumption presents no problem

with respect to the calculation of displacement response time

histories and statistics since the constitutive properties of the

chosen orthotropic material (All, A.12, A, AW6, D11, D12, D22, and

D66) have been obtained from the equations used to obtain consti-
tutive properties of a laminated composite structure.

Derivation of stresses within an orthotropic or laminated

composite panel are different, however. An orthotropic material
has a membrane stress field which is constant through the thick-

ness. The bending stresses vary linearly through the thickness

with the stress being zero at the location of the neutral axis.

Thus, for an orthotropic material, the total stress is simply a

function of the through-thickness coordinate of the panel. For a

laminated composite material, the stress is a function of the
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material properties of the particular lamina. Since, in general,4 lamina lay-up angles vary throughout the thickness, a laminated
composite requires stress-displacement relations which depend

both upon the through-thickness location of the lamina and the

constitutive properties of the lamina.

Figure 18 shows an example of the. stress and strain distribu-

tion through the thickness of a laminated composite. Note that

sthe membrane strain field is constant in value and the bending
i'+• strains vary linearly with through-thickness position. The

stresses vary according to the lamina constitutive properties and

are neither constant nor linear. The stress distribution for an

orthotropic material would be similar to the strain distributions

shown in Figure 18, i.e., membrane stress is constant and the

bending stress is linear through the thickness.
SFor this research, the simpler orthotropic stress-

Sdisplacemen,, re],tdions have been used inasmuch as demonstration
of the feasibility of the time domain approach was the primary

objective. During Phase II the relations for a laminated compos-

ite material will be implemented.

The panel shown in Figure 1 represented the basic configura--

tion used for the orthotropic analysis shown herein. As before,
the lower and upper cut-off frequencies are 0 and 500 Hz, respec-
tively. The duration of the simulated process is 1.024 sec. The

first laminated composite example is composed of the lay-up

[0/1+45/-45/90], for a total of eight layers and an overall thick-

ness of 0.0416 inches. Each layer is made from A-S/3501 Graphi-

te/Epoxy. The basic lamina constitutive properties are obtained

from the 0-degree lamina elastic properties, i.e.,

Et- 2.OE-+ 06

Ga- O.BE+06

v i 0.31
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The numerical results were obtained for a panel with overall

dimensions of a = 20.0 inches, b = 8.2 inches, pp = 0.0001302

Ibi-sec2 /in 4 . The material damping factor was •. = 0.05. The cal-

culated modal frequencies were

Iii = 133 cycles/sec

112 = 466 cycles/sec

= 1,021 cycles/sec

f= 200 cycles/sec

/22 = 533 cycles/sec

f = 1,088 cycles/sec

13, = 313 cycles/sec

132 = 644 cycles/sec

/= 1,199 cycles/sec

Ae an example of the importance of the assumption of linear-

ity or nonlinearity with respect to the strain-displacement rela-

tions, Figures 19 and 20 show the effect of the two assumptions.

Figure 19, the linear response, shows a maximum displacement of

almost 4 inches, whereas the nonlinear response provides only 0.3

inches approximately. The difference is dramatic with the non-

linear response obviously the more realistic.

In the response histories shown, the limitations in the

graphical display device allwed only 240 discrete points of dis-

placement and time to be plotted. Thus, a separate program was

written to take the time history produced by TDR, containing

4,096 discrete points, and reduce it to the first 240 minimum and

maximum points. As a result, the time histories shown appear

slightly different than those prepared for the isotropic panel.

In comparing Figures 19 and 20, it is also observed that

there are apparently more variations between high and low values

for the nonlinear response because 240 points of minimum/maximum

appear in just 0.24 seconds for the n'mnlinear case as contrasted
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to about 0.63 seconds for the linear case. The indication that a

nonlinear response produces more changes in stress direction

could have important implications in the determination of panel

fatigue life and is one more reason why the nonlinear assumption

is preferred over that of linear.

The time histories of the lateral component of stress, a.~iIfor both the linear and nonlinear cases are shown in Figures 21
and 22, respectively. As with the displacement response, the

linear prediction provides unrealistic values, whereas the non-

linear assumption results in the calculation of stress values

that are comparable to the actual expected response of the panel.

Note also that the mean value for the nonlinear assumption is not

zero. Clearly, the use of linear strain-displacement relations

is not warranted for applications involving high levels of acous-

tic loading.

Displacement and stress response probability density histo-

grams, peak distributions, total number of peaks per unit time,

and threshold crossing rates can be obtained from the response

time histories. Figures 23 and 24 show the probability density

histograms for two different sound pressure levels (130 and 150

dB) using nonlinear strain-displacement relations. For compari-

son, a Gaussian density function is given with each probability

density histogram. The nonlinear response is no longer Gaussian.

Figures 25 and 26 show the peak distribution histogram for

the nonlinear strain-displacement relations compared to a Ray-

FT leigh distribution. The nonlinear prediction does not follow the

Rayleigh distribution.
Similar histograms of probability density and peak distribu-

tion for the lateral stress component, ay~ , are shown in FiguresH27-30. and fo h sthepi theoeticlalg prbailityrande peweak dis-

respAse fisogratheaidotropi panoelca largeabdifference betwee the-

theuton can be seen. These large differences are produced by

tenonlinear relationship between stress and displacement arid

are additional confirmation that the assumption of linearity in
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strain-displacement relations is not appropriate for the pre.dic-

tion of stress response in panelo subject to high levels of

acoustic noise.

Figure 31 shows up-crossings per second for v,, for various

levels of sound pressure level,. For the lower sound pressure

level (i.e., 110 dB) the response is mostly linear; however, for

higher levels of input the response is increasingly nonlinear and

the up-crossing rate increases markedly.

"When the basic lay-up just used is varied slightly, it is

possible to alter the response of the panel, As an example,

Figure 32 shows the oa RMS response of the panel for 150 dB input

when the lay-up angle of the interior plies are varied from 0

through 90 degrees. At approximately 30 degrees the RMS response

is at a minimum. Figure 33 shows how the up-crossing rate varies

with lay-up angle--apparently, the up-crossing rate is not

strongly dependent on the lay-up angle for this particular lami-

nated composite example.

As a final example of the usage of the time domain approach,

another laminate construction is examined. Figures 34 and 35

show the up-crossing rate for stress components a., and ay, for a

[+o/-O], laminate. The effect of lay-up angle on response is of

importance in these examples. A designer, knowing that the

l.y-up angle would have an effect on panel response, could poten-

tially alter the design in such a manner that the RMS stresses

and up-crossing rates would be reduced and fatigue life

increased.

Figure 36 shows the RMS stresses for fiber directed and

transverse stresses as a function of the lay-up angle. The fiber

direction stresses are relatively low in this example, approxi-

mately 15,000 psi, when compared to a nominal allowable of

180,000 psi. However, in the transverse to fiber direction the

stress level peaks at about 6,300 psi, which is very close to the

static stress allowable for the matrix material. In an actual



design situation, the panel would need sizing to ensure that the

anticipated stress level is below the allowable fatigue stress

level for the matrix material.

Prediction of fatigue life in composite materials is not pos-
sible at this time because of limitations in the theoretical

understanding of fatigue in composites and the lack of material

property data. As a consequence, predictions of sonic fatigue

life for a composite panel have not been produced. However, the

statistical approach documented for metal panels and the tech-

niques used to produce predictions based on time domain response

analysis are valid and can be utilized when polymer-based compos-

ite technology advances. Phase II work will develop the time

domain response methods for laminated composite materials to the

maximum extent possible. Also, Phase II work will concentrate on

the appropriate theoretical relationship to be used to predict

composite fatigue. The ability to predict acoustically generated

stresses combined with an approach for predicting fatigue of comn-

pesite rnft~eriý1 3 will allow an analyst the ability to use the
time domain approach to predict the sonic fatigue life of struc-

tural panelsi
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IV

ij~j CONCLUSIONS

A simple rectangular panel was selected to demonstrate the

applicability of time domain analysis to predict nonlinear

response and fatigue life of metal and composite panels. It is

shown that the linear theory overestimates deflection and stress

response by a large amount, resulting in a predicted shorter

fatigue life. If one were to use linear theory as a design tool,

then properly designed panels would be relatively stiffer and

heavier than required. A non-optimal, weight-inefficient struc-

ture would result.

The nonlinear response, as predicted by the Mionte Carlo time

domain approach, is non-Gaussian and peaks do not follow a Ray-

leigh distribution. With a nonlinear relationship between stress

and displacement, both the probability density function and the

peak distribution of displacement response process are signifi-

cantly different from those of the linear stress response.

The number of stress peaks per unit time and the up-urossirig

rates increase with the increase of input sound pressure levels

as would be expected; however, the nonlinear stress response has

a mean value while the mean value for the nonlinear displacement

response is zero.

.4 The spectral densities of the nonlinear response show a wid-

ening of response peaks and a shift towards higher frequencies as

the input levels increase and the nonlinearity effects become

more dominant.

'.1 The time domain analysis presented in this study indicates

that for anticipated sound pressure levels acting on present and

future aircraft structures, the various simplified linear theo-

ries used to predict stress response and fatigue life would not

produce realistic structural panel configurations. The rather

dramatic differences between linear and nonlinear predictions is

significant and, thus, is a reminder that structures exposed to

acoustic noise must be carefully designed.
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APPENDIX A

LISTING OF COMPUTER PROGRAM TDR

C**** T D R

TIME DOMAIN RESPONSE ANALYSIS OF A SIMPLY SUPPORTED PLATE
SUBJECTED TO UNIFORM RANDOM PRESSURE AND THERMAL LOAD

C**** BASED ON THE WORK OF RIMAS VAICAITIS OF COLUMBIA UNIVERSITY ****
C**** AND S. T. CHOI (RESEARCH ASSISTANT), 1988-89
C**** **

C**** MODIFIED TO INCLUDE ORTHOTROPIC MATERIALS BY ROCKY ARNOLD,
C**** ANAMET LABORATORIES, INC., 1989

C**** SIMPLY-SUPPORTED SINGLE PANEL SUBJECTED TO UNIFORM RANDOM
C**** PRESSURE AND THERMAL LUADS.

C**** THIS PROGRAM IS USED TO FIND THE DISPLACEMENT AND STRESS
C**** RESPONSE TIME HISTORIES FOR A SIMPLY SUPPORTED PANEL USING
C**** MODAL ANALYSIS IN THE TIME DOMAIN WITH NMODEX MODES IN THE
C**** X-PIRECTION AND NOMODY M4ODES IN THE Y-DIRECTION.

C**** LOADING IS UNIFORM AND TEMPERATURE DISTRIBUTION IS ASSUMED
C**** UNIFORM.
C**** **

C**** PARAMETERS
C**** NX = MAXIMUM NO. OF MODES IN X-DIRECTION
C**** NY n MAXIMUM NO. OF MODES IN Y-DIRECTION
C**** NXY = NX'* NY

NTEQ = MAXIMUM TOTAL NUMBER OF EQUATIONS (=2*NXY)
C**** NSTEPT = MAXIMUM NO. O7' TIME STEPS
C**** NMODEX = ACTUAL NO. OF MODES IN X-DIRECTION USED IN ANALYSIS ****
C**** NMODEX = ACTUAL NO. OF MODES IN Y-DIRECTION USED IN ANALYSIS ****
C**** RMSD = ROOT MEAN SQUARE OF DISPLACEMENT RESPONSE
C**** RMSX = ROOT MEAN SQUARE OF STRESS RESPONSE SIGMA(X)
c**** RMSY = ROOT MEAN SQUARE OF STRESS RESPONSE SIGMA(Y)
C**** RMSXY = ROOT MEAN SQUARE OF STRESS RESPONSE SIGMA(XY)
C**** RLOAD = GAUSSIAN RANDOM PRESSURE

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (MXPARM=50, NX=3, NY=3, NXY=9, NTEQ=18, NSTEPT=8192)
DIMENSION A(NXNY),PARAM(MXPARM),Z(NTEQ),ZETAIJ(NX,NY)I

1 VIJMN(NX,NYNX,NY),ZNTIJ(NX,NY),CO(NXNY),
2 WIJ(JX,NY),ZIJKLMNRS(NXY,NXY,NXYNXY),QIJ(NX,NY),
3 WIJ2(NX,NY)

DIMENSION YR(18),DYR(18),YIR(18),Y2R(18),Y3R(18)
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REAL*4 TIME(10)
COMMON /COMO/ XLYL,VZETA11
COMMON /COM1/ QIJ,WIJ2,CO
COMMON /COM2/ XYLIJKL
COMMON /COM3/ NMODEXNMODEY,NMODEXY,NDIMX,NDIMYNDIM4XY,ILIN
COMMON /COM4/ VIJMNZIJKLMNRS
COMMON /COM5/ IIIEATZNTIJ
COMMON /RNG/ NR,XRYRDYR,HH,JR,JMAXMRXOUT,IFREQX1R,X2R,X3R,

Y1R,Y2RY3RTOL
COMMON /XFER/ ISTEPDSTEPDDTRLOAD(8192)
COMMON! PROPS/ A11,A12,A22,ASSHT1,T2,T3
DATA NDIMXNDIMY, NDIMXYI3,3,9/

C**** READ IN INPUT DATA

TIME(1)=SECNDS(0.)
CALL READ(XY,DSTEPNSTEP,NEQ,PI,WIJ,PQ1,CIC2,C3,C4,
1PX, PY,XYL,XL2,YL2 ,VIJMN,ZIJKLMNRS, IHEAT, ZNTIJ,

2 STHERXSTHERYsSPL)
TIME(2)=SECNDS(TIME(1) )+TIME(1)
NR=NEQ

C**** CALL ROUTINE TO CALCULATE TIME DOMAIN SIMULATION OF PRESSURE

TIME(3)=SECNDS(TIME(2) )tTIME(2)
CALL SIMLOAD(SPL)
TIME(4)=SECNDS(TIME(3) )+TIME(3)

C**** INITIALIZE S'JMMING PARAMETERS

SUMD=0O.
SUMD2=O.0
SUMX=0.0
SUMX2=0 .0
SUMY=0. 0
SUMY2zO.0
SUMXY=O.0
SUMXY2zO .0
T=0.0
XR=T

C**** COMPUTE DAMPING TERM

DO 5 I=1,NMODEX
DO 5 J=1,NMODEY

ZETAIJ(I ,J)=ZETA11*(WIJ(1,1)/WIJ(I ,J))
00(1 ,J)=2.*ZETAIJ(I ,J)*w1J(I ,J)
WIJ2(IJ)WWIJ(I,J)*WIJ(I,J)

5 CONTINUE

C*' ** COMPUTE PRESSURE TERM

DO 20 Irn1,NMODEX
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DO 2n J~1,NMODEY

20 CONTINUE

C**** SOLVE PDEa FOR DISPLACEMENT

TIME(5)=SECNDS(TIME(4) )+TIME(4)
DO 10 ISTEP4-,NSTEP

TEND = FLOAT(ISTEP)*DSTEP
HH=DMIN1(DSTEPDDT)*0, 125
XOUT=TEND
CALL RUNGE
DO 30 I=1,NMODEX
DO 30 J=11NMODEY

K= (I- ) *NMODEY+J

30 CONTINUE

C**** COMPUTE STRESS RESPONSE

T=XR
TD=DSTEP
CALL RESPON(AXL,YL,ISTEPTD,,C1,C2,C3,C4,PX,PY,XYLIHEATs

1 STHERX,STHERYSUMDSUMD2,SUMXSUM4X2,SUMY,SUMY2,
2 SUMXYSUMXY2)

10 CONTINUE
TIME(6)=SECNDS(TIME(5) )+TIME(5)

C**** COMPUTE MEAN, MEAN SQUARE AND RMS VALUES

SUMD=SUMD/FLOAT (NSTEP)
SU?4D2=SUMD2/FLOAT (NSTEP)
RMSD=DSQRT (SUMP2)
SUMX=SUIO.X/FLOAT (NSTEP)
SUMX2=SUMX2/FLOAT (NSTEP)
RMSX=DSQRT (SUMX2)
SUMY=SUMY/FLOAT (NSTEP)
SUMY2=SUMY2/FLOAT (NSTEP)
RMSY=DSQRT (SUMY2)

SUMXY=SUMXY/FLOAT (NSTEP)

WRITE(6,1000) SUMXY, SUMXY2, RMSXY

1000 FORMAT(' Dispi. (in): Mean = ',E11.4,' M.S.= 0,E11.4,
+ ' RMS ='Ell.4)

1003 FORMAT(' sigmaX (psi): Mean ='gE11.4,' M.S.= IsEl1.4l
+ ' RMS 1 ,Ell.4)
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1004 FORMAT(' sigmaY (psi): Mean = ',E11.4,' M.S.= 19E11.49
+ ' RMS ',IE11.4)

c1005 FORMAT(' tauXY (psi): Mean =',E11.4,' M.S.= $,E11.49
c + EMS = 9,E11.4)

PRINT 1100
1100 FORMAT(/,' Output files FOR008: Response histories',!!)

TIME(7)=SECNDS(TIME(6) )+TIME(6)

PRINT OUT TIME SUMMARY

f.9998 FORI4AT(//,X,'TIME AR IN READ SUBR0UTITURSF.1' SEONS'
WRITE(6,99997) TIME(3)-TIME(2)

9998 FORMAT(/tXt'TIME BEWEN REDADEILAD SUBROUTIFE j81'SCNDS=')F.

WRITE(6,99967) TIME(4)-TIME(3)
9997 FfOEMAT(/,X,'TIME INWE RA N SIMLOAD SUBROUTINES= ',F8.1,'SCOD'

WRITE(6,99956) TIME(5)-TIME(4)
9996 FORM4AT(/,X,1TIME BEWEN SIMLOADANRUE SUBROUTINE= ,819SECONDS*)

WRITE(6,9994) TIME(6)-TIME(5)
9995 FORMAT(/,X,'TIME INTWEENE SUBROTIAND RUNGE1 SUB COUTNES')9F.1

77 WRITE(6,9993) TIME(6)-TIME(6)

9993 FORMAT(/,Xj'TIME BETWEEN RUNGE AND FROGRAM END= ',F8.1,
1 ' SECONDS))

STOP
END
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SUBROUTINE IJKIJUIR(VIJMNZIJKLMNBSZNTlJ ,P2,P3,P4XP4Y,
1 XL2,YL2,IHEAT)
IMPLICIT REAL*8 (A-HO-Z)
COMMON /COM2/ XYLIJKL
COMMON /COM3/ NMODEX,NMODEY,NMODEXYNDIMXNDIMYNDIMXY, ILIN
COMMON /PROPS/ AllA12ýA22qA66,HTl,T2jT3
DIMENSION VIJM4N(NDIMXNDIMYNDIM4X,NDIMY),ZNTIJ(NDIMXsNDIMY),j1 ZIJKLMNRS(NDIMXY,NDIMXYNDIMXYNDIM4XY)

C**** COMPUTE LINEAR (HOMOGENEOUS) COMPONENT OF AIRY STRESS FUNCTION **

CI 2XL2=I*I/XL2
.)p DO 10 J=1,NMODEY

CJ 2YL2=J*J/YL2
DO 10 M=1,NNODEX

CM2XL2=M*14/XL2
DO 10 N~lNMODEY

CN2YL2=N*N/YL2
VIJMN( I,J ,MN)LP2*(CI2XL2*(T1*CM2XL2+T2*CN2YL2)

1 +CJ2YL2*(T2*CM2XL2+T3*CN2YL2))
10 CONTINUE

IF(ILIN EQ. 0) GO TO 20

C**** COMPUTE NONLINEAR (Pi,.'-TICULAR) COMPONENT OF AIRY STRES FUNCTION **

DO************* 15*****************************
DO 15 I=1,NMODEY

IJ=(I-1)*NMODEY+j
DO 15 K=1,NMODEX
DO 15 L=4,NMODEY<1 KL=(K-1)*NMODEY+L
DO 15 M=19NMODEX
DO 15 N=1,NMODEY

MN= (M-i)*NMODEY+N
DO 15 IR=1,NMODEX
MPR~m+ I E
MMR~m-IR

DO 15 1S=1tNMODEY
IRS=(IR-1)*NMODEY+IS
NPS=N+IS
NMS=N-I S
NR=N*IR
MS=M*IS
ZIJKLMNRS(IJ,KL,MNsIRS) =P3*
1 ~(MS*(NR-Mg)*(FIJ(MPRNPS)+FIJBAR(MMRNMS))+

2 MS*(NR+MS)*(FIJ(MMRNPS)+FIJ(MPR,NMS)))
16 CONTINUE
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C**** COMPUTE THERMAL COhiPONENT OF AIRY STRESS FUNCTION

20 IF (IHEAT .NE. 1) THEN
ELSE

DO 30 I=1,NMODEX
CI2XL2==*I/XL2

DO 30 J=1INMODEY
ZNTIJ(I,J)=P4X*CI2XL2+P4Y*J*J/YL2

30 CONTINUE
END IF
RETURN
END
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C**** ~S I M L 0 A D **

C N -- NO. OF INTERVALS IN THE SPECTRUM
C N SHOULD BE AN INTEGER POWER OF TWO
C NPT -- NO. OF POINTS FOR THE TIME SERIES
C NPT SHOULD BE INTEGER POWER OF TWO. NPT>N
C ISEED -- RANDOM NU14ER SEED
CSM

SUBROUTINE SIMLOAD(SPL)IMPLICIT REAL*8 (A-HO-Z)

COMMON /XFER/ ISTEPDSTEPDTY(8192)
DIMENSION X(8192),SP(3500),W(3500),RAND(8192)
COMPLEX XZIMAG
LOGICAL INVERSE
DATA FMAXINVERSE/500.,.TRUE./
DATA N,NPT /512, 4096/

C**** INITIALIZE VARIABLES

SPP=-8.41*10**(-18.+SPL/10.)
PI = 3.141592654
P12 = PI * 2.0
NP1 = N + 1
ZIMAG CMPLX(O.0,1.0)
SPPW=SPP/PI 2
WU=FMAX*PI2
DW = WU / FLOAT(N)
DO 119 I=1,NP1

SP(I)=SPPW
W(I)=(I-1)*DW

119 CONTINUE
AREAfSPP*FMAX
SQ2DW = DSQRT(2.0*DW)
TTOTAL=PI2/DW
DT=TTOTAL/FLOAT(NPT)

C**** SET X(1)=0. IN ORDER TO OBTAIN NEW MEAN ZERO TIME SERIES

X(1) = CMPLX(0.0,0.0)
DO 50 I = N+1,NPT
X(I) = CMPL(O.0,O.O)

50 CONTINUE

C**** GENERATE RANDOM PHASE ANGLES UNIFORMLY DISTRIBUED BETWEEN
C**** ZERO AND 2.*PI

ISEED=12357
DO 51 1=1,N

51 RAN*(I)=RAN(ISEED)
DO 60 I=2,N+1
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-i PHI = RAND(I-1) P12
Pl = SQ2DW * DSQRT(SP(I))
X(I) P1 * CDEXP(-ZIMAG*PHI)

60 CONTINUE

C**** PERFORM FORWARD TRANSFORM

CALL FFT (XNPT,1)

C**** GET REAL PART ****

DO 70 I=z,NPT
Y(I) REAL(X(I))

70 CONTINUE
RETURN
END
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I~~ IK: J

INK=I-K
JPL=J+L
J4L=J-L
KH=K*IH
LG=L*IG
FIJ=2.*XH*LG*(BETA(IPKIG)+BETA(IN4K,IG) )*(BETA(JPL, IH)+
1 BETA(JMLIH))-(KH**2+LG**2)*(GANKA(IPKsIG)-
2 GANMA(IMKKIG))*(GMOAGKA(PLIll)-GANMA(JMLIH))'4 DENOM=A22*IG**4+(A66+2.*Al2)*XYL**2*(IH*IG)**2
1 +Al1*XYL**4*IH**4
FIJ:FIJ/(H*DENOl4)

RETURN

ENDilo
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FUNCTION FIjl~aAR(IGsIH)
IMPLICIT R1RAL*8 (A-H,O-Z)
COMMON /C010,/ XYL,I,J,K*L
COMMON /PROPS/ Al1,A12,A22,A66,H*T1,T2,T3
IF (IG .EQ. IH .AND. 10 .EQ. 0) THEN
FIJBE=O. 0

ELSE

I.PK=I+K
A IMK=I-9

JPL=J+L
JML.J-L
KH=K*XIHA LG=L*IG
FIJBAR=2.*KH-*LG*(BETA(IPKIG)+BETA(IMKIG) )*(BETA(JPL,IH)+

I. BETA('JML,IH))-(KH**2+LG**2)*(GANMA(IPK,IG)-
2 GANMA(IMKIG))*(GAMMA(JPLIH)-GANMA(JMLIH))

DENOM=A22*IG**4+(A66+2.*Al2 )*XYL**2*( IH*IG)**2+A11*XYL**4*IH**4
FIJBAR=FI JBR/ (H*DENOM)

END IF
R~ETURNi9 END
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i•• C**** B 9 T A ,*

FUNCTION BETA(IP,IQ)
IMPLICIT REAL*8 (A-HoO-Z)
IF (IP .EQ. IQ .AND* IP .NE. 0) THEN

BETA a 1.0
"ELSE IF (IP .EQ. -IQ .AND. IP .NE. 0) THEN

BETA = -1.0
ELSE
BETA = 0.0

END iF
RETURN
END
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G A MXA

FUNCTION GAMMA(IPIQ)
IMPLICIT REAL*8 (A-Ho0-Z)
IF (IP**2+IQ**2 .EQ. 0) THEN
GAMMA =2.0

ELSE IF (IABS(IP) .EQ. IABS(IQ) .AND. IP .NE. 0) THEN
GAMMA =1.0

ELSE
GAMMA =0.0

END IF
RETURN
END

'4 ý
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D I F FEQ

SUBROUTINE DIFFEQ HO)
IMPLICIT REAL*S (A-Hoz
COMMON /RNG/ NsXZZPBIMEHH,JRJMAXMRXOUT, IFREQ,

X1,X2,X3,Ylq`Y2,Y3qTOL
COMM4ON /XFER/ ISTEPDSTEPqDTRL0AD(8192)
DIMENSION Z(18),ZPRIME(18),YI(18),Y2(18),Y3(18)
DIMENSION QIJ(393),WIJ2(3n,~C0(393),ZNTIJ(3,3)s

VIJMN(3,393,3)sdk(LMNWRS(9s9,9,9)
"44 C.ýKAON /COMI/ QIJ, WIj2q 0ý

COMMON /COM3/ NMODEX,NKODEYNMO0DEXYsNDIMXNDIMYNDIMXY, ILIN
COMMON /00144/ VIJMN, ZIJKLMNRS
COMMON /00145/ IHEATq ZNTIJ
DATA ICNT/O/

C**** I NTERPOLATE TO DETERMI NE LOAD TERM

NEQ=N
IF(ICNT.GT.0)GO TO 2
ICNThi
IPLUS:1
PEMO0.O
PRP-O.O
T1=0.0
TO=-DT
SLOPE=0.0
PR=O.0

2 IF(X.GT.T1) GO TO 1
IF(X.LT.TO) GO TO 3
PR=PRN+(X-TO)*SLOPE
GO TO 20

3 IPLUS=-1
1 ICNT=ICNT+IPLUS

M RMLOAD( ICNT-1)
PRP-RLOAD( ICNT)
SLOPE: ( PB1-PR ) /DT
TO:T04DT*I PLUS
T1=T1+DT*IPLUS
IPLUSm1

20 GOTO 2
20 CONTINUE

C**** SPECIFY DIFFERENTIAL EQUATIONS

DO 5 K:1,NNODEXY
ZPRIME(K)=Z(K+NHODEXY)

5 CONTINUE
DO 10 I:1,NMODEX
DO 10 J=1,NNODEY



K�(I-1)*NM0DEY+J
KKNNODEfl+K
CALL VZIJ(VIJZ�J.,ZNEQ�iJ)
ZPRIME(KK) 2 PR*QIJ(IJ)-CO(IJ)*Z(KK)-WIJ2(IJ)*Z(K)

1 -VIJ*Z(�)-ZIJ+ZNTIJ(IJ)*Z(K)
10 CONTINUE

RETURN
END

1
e
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SUBROUTINE VZIJ(VIJsZIJvZNEQ9IJ)
IMPLICIT REAL*8 (A-HO-z)
DIMENSION Z(NEQ)t VIJMN(3,393,3)o

f+ ZIJKLM M (99,9999)K COMMON /COM3/ NMODEXNMODEY,NMODEXY9ND1IMX,NDIMYNDIMXY, ILIN
COMMON /COM4/ VIJMNtZIJKLMNRS

VIJ=0.0
zIJ=O.0
IJ=(I-1)*NMODEY+J

DO10M1,MOE
DO 10 N=1,NMODEY

MN=(M-1)*NMODEY+N
IF(ILIN .EQ. 0) GO TO 10
VIJ=VIJ+Z(MN)*z(MN)*VIJI4N(I ,J,M5N)
ZKLRS=O *
DO 20 K=1,NMODEX
DO 20 L=1,NMODEY

K KL=(K-I)*NMODEY+L
ZRS=0.0
DO 30 IR=19NMODEX
DO 30 IS:1,NI4ODEY

ZRS=ZRS+Z(IRS)*ZIJIKLNNRS(IJ,KLMNIRS)
30 CONTINUE

ZKLRS=ZKLRS+Z (KL )*ZRS
20 CONTINUE

"'d ~ZIJ=ZIJ+z(MN)*ZKLRS
10 CONTINUE

RETURN
END
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SUBROUTINE RESPON(AXL,YLISTEP,DT,ClC2,C3,C4,PXPYXYLIHEAT,
1 STHERXSTHERYSUMDSUMD2,SUMX,SUMX2,SUMYtS~ldy2,

2 SUM.XYSUM.XY2)
IMPLICIT REAL*8 (A-H,O-z)
DIMENSION A(NDIMXsNDIM4Y)
COMMON /COM3/ NMODEX ,NMODEYNMODEXYNDIMXNDIMY, NDIMXY, ILIN
COMMON /PROPS/ AllqA12qA22qA66,HTlvT2qT3

C**** INITIALIZE

* DISPL=O.0
SIGMAX=O.O
SIGMAY=O.0
TAUXY=O *

C**** COMPUTE STRESSES BY SUMMING LINEAR AND NONLINEAR TERMS

DO 10 M=19NMODEX
SINMX=DSIN(M*PX)

XLM=M/XL
DO 10 N=1,NMODEY
YLN=N/YL
SINNY=DSIN(N*PY)
COSNY=DCOS (N*PY)
DISPL=DISPL+A(M, N)*SINM4X*SINNY

C**** CALCULATE STRESSES FROM NONLINEAR PART OF AIRY STRESS FUNCTION **

00 CALL SUMRS(RSX1,RSX2,RSY1,RSY2,RSXY1,RSXY2,M,N,
1 A,PXIPYsXLoYLsXYL)

CC1=C2*A(M,N)
IF(ILIN *EQ. 0) CC1=0.

CC0=A(M*N)*(C1*SINMX*SIWN '+CC1)
SIGMAX=SIGMAX4.CCO* (Tl*XLM**2+T2*YLN**2)-C3*A(MN)*(RSX1tRSX2) o

TAUXY=TAUXY+ (C4/A66 )*A(MN)*COSMX*COSNY-C3*A(M, N) *(RSXY1+RSXY2)
10 CONTINUE

J \1 **** ADD IN THERM4AL COMPDONENT

IF (IHEAT .NE. 1) THEN
ELSE
SIGMAXmSIGMAX-STHERX

¶ ~SI GMAY=SIGMAY.-STHERY
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END I F

C**** PRINT OUT TIME DOMAN RESPONSE

T=DT*ISTEP
WRITE(6,100) T, DISPL, SIGMA!, SIGMAY

100 PORMAT(2XF8.8,3(21,E14.6))
WRITE(1,1000) TDISPLSIGMAXSIGMAYTAUXY

1000 FORMAT(5E1.3)

C**** SUM DISPLACEMENT/STRESSES, AND SQUARES

SUND=SUMD+DISPL
SUMDZ=SUMD2+DI SPL*DI SPL
SUMX=SUMXtSIGKfl
SUMX2=SUMX2+SI GMAX*SI GRAX

A' SUMY=SUMY+SI GMAY
SUMY2=SUMY2+SI GMAY*SI GMAY
SUMXY=SUMXY+TAUXY
SUMXY2=SUMXYZ+TAUXY*TAUXY
RETURN
END
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S U M-R S

SUBROUTINE SUMRS(RSX1,RSX2,RSY1,RSY2,RSXYlRSXY2,MsN,
1 AsPXtPYoXLIYLoXYL)

IMPLICIT REAL*8 (A-HO-Z)
COMMON /COM3/ NMODEXNMODEYNMODEXYNDIMX,NDIMY,NDIMXYsILIN
COMMON /PROPS/ AllAl2,A22qA669HqT1,T2qT3
DIMENSION A(NDIMXNDIMY)

Ct**************************************C**** INITIALIZE

Sl=A22*H
S2=(2.*A12+A66)*H
S3=A1 1*H

RSX2=0.0

RSY1=0.0
RSY2=0.0

RSXY2=0.0
IF(ILIN *EQ. 0) RETURN

C**** COMPUTE NONLINEAR STRESSES (FROM PARTICULAR SOLUTION)

DO 10 IR=i,NMODEX

MPR=M+IR

XMMR=MMIR/
XMPR2=MPLMPR**

LMMIR2=XMMR**2R

CLMPRX:COXLMPR*PX)

CMMRX=DCOS(MMR*PX)
SMPRX=DS1 N (MPR*PX)
SbMRX=DSIN(MMR*PX)

DO 10 IS=19NMODEY
NPS=N+IS
NMS=N-IS
NPS2=NPS*NPS
NMS2=NMS*NMS
YLNPS=NPS/YL
YLNMS=NMS/YL
YLNPS2=YLNPS**2
YLNMS2=YLN14S**2
CNPSY=DCOS(NPS*Pl')
CNMSY=DCOS (NMS*PY)
SNPSY=DSIN(NPS*PY)
SNMSY=DSI N(NMS*PY)
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XYNPS=XYL*NPS
XYNMS=XYL*NNS
XYhPS2zXYNPS**2
XYNMJ2=!YIOES**2

C**** TERMS FOR WHICH "KR .NE. ML"

IF (N*IR .EQ. M*IS) THEN
ELSE

PP1 CMPRX*CNPY./ ( 1*MPRZ**2+S2*MPR2*XYNPS2+83*XYNPS2**2)
PP, ý:CNWlJ*CNi4IIY/ (sl*Nm2**2+s2*nM2*XmNMSI+s3*xyNNs2**2)
PP5S:SMPX*SNPSY/ (S1*MPR2**2+82*MP22*YYNPS2+83*XYNPS2**2)j ~PP=SIRXM*SNMSY/( S1*MMR2**2+82*MMRZ*XYMMS2+83*XYNMSZ**2)
Q1=A(IRgIS)*M*IS*(N*IR-M*IS)
RSX1=RSX1+Q1*(YLNPSZ*PP1+YLNNS2*PP2)
R8Y1=RSY1+Q1* (XLMPR2*PP1+XLMMR2*PPZ)
RSXY1cR5XY1tQ1* CXLflPt*YLNPS*PP6+XUBIR*YLNMS*PP6)

END IF

C**** TERMS FORI WHICH "KR .EQ. KjTJ

PPF:CXMP*CNMSY/ (S1*MPRZ**2482*MPR2*XYNMS2+S3*XYNMS2** .I)'I ~ ~pP4=cMMRX*CNPSY/ (S1*JmI2R**2+52*1MR2*XYNPS2+S3*XYhPS2** .)

RSX2=RSX2+Q2* (YLNMS2*PP3+YLNPS2*pp4)
RSY2=28Y2+QZ* (XLMPR2*PP3+XLMMRZ*PP4)
RSXY2=RSXYZ+QZ* (XLMPR*YLNIIS*PP7+XLMIJ*YLNPS*pp8)%

10 CONTINUE
RETURN
END
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I SUBROUTINE RUNGE
I IMPLICIT REAL*8 (A-HIO-Z)

COMMON /RNG/N,XY,DYtHHlJ,JMAXoN, XOUT,IFREQ5X1,X2sX3,YlY2,Y3,TOL
DIMENSION Y(18),DY(18),Yl(18),Y2(18),Y3(18)
J~1
JMAX~l
IFREQ=3
M= 1
CALL EUNKUT
RETURN
END
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SUBROUTINE RUNKUTi
IMPLICIT REAL*8 (A-H,O-Z)
COW4MON/RNG/No XYIDY,HHJ,JMAXM, XOUT,IFREQX1,X2,X3,Y1,Y2,Y3,TOL
DIMENSION Y(18)gDY(18),Y1(18)sY2(18),Y3(18)
INDE9 0
CALL ADJSTP

4 IF(J-JMAX) 10,10,50
10 INDE9 = INDE9 + 1

CALL INTPOL
IF(J-JMAX) 20,20,50

20 CALL STEP
xi = X2
X2 = X3
X3
DO 30 1 1, N
Y1(i) = Y2(I)
Y2(1) = Y3(I)

30 Y3(1) = Y(I)
IF (INDE9 -IFREQ) 10,40,40

*1140 INDE9 ADST

50 RETURN
END
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SUBROUTINE ADJSTP
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/RNG/NXY ,DY,HHJ,JMAXsMXOUTIFREQX1 ,X2,X3,Y1 ,Y2,Y3,TOL
DIMENSION Y(18),DY(18),Y1(18)sY2(18),Y3(18)-
KSL=0
HFACT = 1.0 D+31
HFACT1 =1.OD+30

#Kf iGO TO (30910), M
10OHI = HH

HH = 2.0*HH
x = X1
DO 20 1 1, N

20 Y(I) =YI(I)

GO TO 100
30 KSL=1
40 Hi HH

XXX -X
DO 50 I 1, N

50 Y1(I) =Y(I)

CALL INTPOL
IF(J-JMAX) 60,609250

60CALL STEP
DO 70 I =.l, N

70 Y2(I) Y(I)
X2
CALL INTPOL
IF(J-JMAX) 80980o250

80 CALL STEP
DO 90 I 1, N
Y3(I) =Y(I)

90 Y(I) = Y1(I)
X3=I = =XXX
HI! = 2.0*1H1

100 CALM STEP
DO 150 I1 1, N
DELY DABS ( Y(I)-Y3(I))/30.O
IF(DELY -DABS (Y2(I))MTL )120,1109110

110 IF( DABS (Y2(I))-TOL) 120,130,130
120 HFIRST 1.OD+30

GO TO 140
130 HFIRST= (DABS (Y2(I))* TOL/DELY )**0.2
140 CONTINUE
150 HFACT=DMINI (HFACT9 HFIRST )

IF (HFACT1 - HFACT) 160,160j170
160 H1 =2.0 *Hl

GO TO (40,230), N
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170OHH =H1I lACT
•1 GO TO (180,230), X

180 IF(KSL) 220,220,190

190 KSL=0
IF(DABS (HH)-DABS (Hi)) 200,220,220

200 DO 2101 1, N
210 Y(I) - YI(I)

x =XXx
GO TO 40

220 KSL=0
M =2

230 DO 240 1= 1, N
240 Y(I) = Y3(I)
250 RETURN

END

1'21
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SUBROUTINE STEP
IMPLICIT REAL*8 (A-H,o-z)
COMMON /RNG/NX,YDYIWJJMAX,MXOUT, IFREQX1 ,X2,X3sYIY2,Y3,ToL
DIMENSION Y(18),DY(18),Yl(l8),Y2(18),Y3(18)
DIMENSION YO(18),P1(18)
DO 10 I 1, N

10 YO(I) Y(I)
x0 =

~~1CALL DIFFEQ
DO 20 I = 1, N
P10I) =DY(I) * HH

20 Y(I) =YO(I) + P1(I)*0.8
X = XO + *O.5
CALL DIFFEQ
DO 30 1I 1, N

30 Y(I) =YO(I) + 0.5*HH*DY(I)
k CALL DIFFEQ

DO 40 1 = 1, N
P1(I)= Pl(I)+2.0*HH*DY(I)

40 Y(I) = YO(I) + HH*DY(I)
x ~ = XO +.HH

CALL DIFFEQ
DO 50 I 1, N

50 Y(I)=Y0(I) + (P1(l)+HH*DY(I))*0.1666667
RETURN
END
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SUBROUTINE INTPOL
IMPLICIT REAL*8 (A-H,O-Z)

" C ~COMMON /RNG/NXsY,DYHHJJMAXM,XOUTIFREQX1,X2,X3sYlY2,Y3,TOL
DIMENSION Y(18)vDY(18),Y1(18),Y2(18),Y3(18)
IF(DABS (XOUT -X)-DABS (HH)) 10,10s20

10 HH=XOUT-X
CALL STEP

J~+ 1
20 RETURN

END
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SUBROUTINE FFT(XN,K)

IMPLICIT INTEGER (A-z)
REAL*4 GAINPI2,ANGRE,lM
COMPLEX X(N)lXTEMPoT,U(16)tV,W
DATA P12,GAIN,NOKO/6.283185307,1.0,OoO/

NE W=NO.*NE.*N
IF(.NOT.NEW)GO TO 2
L2N=O
N0=1

L2N=L2N41.
NO=NO+NO
IF(NO.LT.N) GO TO 1
GAIN=1.O/N
ANG=P1 2*GAI N
RE=COS(ANG)
IM=SIN(ANG)

2 IF(.NOT.NEW.AND.K*KO.GE.1) GO TO 4
U(1)=CMPLX(REs-SIGN(IM,FLOAT(K)))
DO 3 I=2,L2N

3 U(I)=U(I-1)*u(I-1)
KO=K

4 SBY2=N
DO 7 STAGE~1,L2N
V=U(STAGE)
W= (1.*010.*0)
S=SBY2
SBY2=S/2
DO 6 L=1,SBY2
DO 5 I~lsNS
P= I+L- 1
Q=P+SBY2
T=X(P)+X(Q)
X(Q)=(X(P)-X(Q))*W

5 X(P)=T
6 W=W*V
7 CONTINUE

DO 9 I=1$N
INDEX=1-1
JNDEX=0
DO 8 J=19,L2N
JNDEX=JNDEX+JNDEX
I TEMP= INDEX/2
IF(ITEMP+ITEMP.NE. INDEX)JNDEX=JNDEX+1
INDEX=ITEMP

8 CONTINUE
J=JNDEX+l
IF(J.LT.I)GO TO 9
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XTEIP--X(J)
XC J )uX(I)
X(I)=XTENP

9 CONTINUE
IF(K.GT.O)RETURN
DO 10 I='1,N

10 X(I)=X(I)*GAIN
RETURN
END
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PROGRAM PDF

C**** THIS PROGRAM IS USED TO CALCULATS THE PROBABILITY DENSITY
C**** FUNCTION, PEAK DISTRIBUTION, AND UP-CROSSING RATE OF A RANDOM ****
C**** PROCESS.
C**$****
C**** THE CALCULATION IS DONE FROM -4*SD TO 4SD WITH NDIV INTERVALS I!!
C**** IN EACH STANDARD DEVIATION (SD). THE TOTAL NUMBER OF INTERVALS **
C**** IS 8*NDIV WITH THE FIRST INTERVAL BEING -INFINITY TO **

C**** -(4,-(4-1/NDIV)SD) AND THE LAST INTERVAL BEING (4-1/NDIV)SD) TO ****
C**** INFINITY.
C**** 8*

C**** THE INPUT DATA FILE IS FOROO1.DAT WHICH CONTAINS THE RESPONSE **
C**** TIME HISTORY PRODUCED BY PROGRAM TDR. **

COMMON/TITLES/ TITLE(20),SUBTIT(20)
DIMENSION F(13000), XDENS(200), XNPK(200), XCROSS(200)
CALL READDATA(F,NPTSDDSDNHALF,NHALF1,

1 NDIVNDIVT,DXTTOTALSHIFT)
CALL DENSITY(F,XDENS,NPT,SD,DSDNHALF,NHALF1,

1 NDIVTDX,SHIFT)
CALL PEAKDIS(FXNPKNPT,SDDSDNHALF,NHALF1,

1 NDIVTDXTTOTAL,SHIFT)
CALL UPCROSSR(FXCROSSNPTSDDSDNHALFNHALF1,
1 NDIVT,DX,TTOTAL,SHIFT)

C**** INFORM USER OF OUTPUT FILES AND CONTENTS

TYPE 5

TYPE *,' Output files: FOR007 -- Probability density and'
TYPE * theoretical Gaussian'
TYPE ' Output files: FORO08 -- Peak distribution'
TYPE ' Output files: FORO09 -- Upcrossing rate'
TYPE 5 Output files: FOR010 -- Theoretical Gaussian'TYPE ' Output files: FOR011 -- Theoretical Rayleigh'
STOP
END

C*** ****
C**** SUBROUTINE READDATA **
C**** **
C**** READS DATA, COMPUTES THE MEAN, RMS, STANDARD DEVIATION, ****
C**5* COEFFICIENTS OF SKEWNESS, KURTOSIS OF THE PROCESS ****

SUBROUTINE READDATA(FNPTSDDSDNHALF,NHALF1,NDIV,NDIVT,DX,
I TTOTALSHIFT)

DIMENSION F(1)
COMMON/TITLES/ TXTLE(20),SUBTIT(20)
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CHARACTER*80 DUMP

C**** READ IN DATA FROM TDR (FOROO1.DAT) AND SCREEN (UNIT 5)

READ(1,10000) TITLE
10000 FORMAT(Xs20A4)

READ( 1,10000) SUBTIT
READ(1910001) NPT,DT

C 10001 FORMAT(15,E1O.3)
-READ (5,111) ICOL,NT)IV9IMEAN

11 FORMAT(315)
TTOTAL=DT* (NPT- 1)
DX=1./NDIV ! DX nondimensional incresent.
NDIVT=NDIV*8 ! Total # of divisions from -45D to +4SD
NHALF=4*NDIV
NHALF1=NHALF+l
IF (ICOL .EQ. 2) THEN
DO 81 I1=1NPT

81 READ (1,99) ZJUNKl F(I)
99 FORMAT(5E10.3)

ELSE IF (ICOL .EQ. 3) THEN
DO 82 I=1,NPT

82 READ (1j99) ZJUNKs ZJUNK, F(I)
ELSE IF (ICOL .EQ. 4) THEN
DO 83 I1=1NPT

83 READ (1999) ZJUNK, ZJUNKO ZJUNK, F(I)
ELSE
DO 84 I=1,NPT

84 READ (1,99) ZJUNK9 ZJUNK, ZJUNK9 ZJUNK, F(I)
END IF

C**** FIND MEAN AND RMS FOR PROCESS

SUM=0.O
SUM2=0. 0
DC 10 =1,NPT
SUM=SUM+F(I)A SUM2zSUM2+F(I )**2

10 CONTINOiZ
XMEAN=SUM/NPT
SUM2=SUM2/NPT
RMS=SQRT (SUM2)

C**** FIND STANDARD DEVIATION (SD), COEFFICIENTS OF SKEWNESS, KURTOSIS **

SUMV=0.0
SUMS=0.0
SUMK=0. 0
DO 20 1=1,NPT
DIFF=F(I)-XMEAN
DI FF2=DIFF*DI FF
SUM V=SUM V+DI FF2
SUME3=SUMS+DI FF*DI FF2
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SUMK=SUMK+DIFF2*DIFF2
20 CONTINUE

SD=SQRT (SUMV/NPr)
COSKEW=SUMS/SD**3/NPT
COKURT=SUMK/SD**4/NPT-3.

C**** WRITE OUT CALCULATIONS

WRITE(6,1111)
1111 FORMAT(1HI,//,IOX,' PDF ,/,

1 lOX,' FOR AFSC/ASD/PMRNA
2 lOX,' WPAFB, OHIO ,/,
3 1OX,' BY ANAMET LABORATORIES, INC.',/,
4 lOX,' HAYWARD, CALIFORNIA ,1/9
5 lOX,'CONTRACT NO. F33615-89-C-3210' ,/)

1234 WRITE(6,1234) (TITLE(KK),KK=1,20)
1234 FORMAT(/,X,20A4)

WRITE(6,1234) (SUBTIT(KK),KK=1,20)
WRITE (6,30) XMEAN, RMS, SD, COSKEW, COKURT

30 FORMAT(1OX,' MEAN = ',E13.5,/,
+ loX,' RMS = ',E13.5,/,
+ lox,' STANDARD DEVIATION = ',E13.5,/,
+ 1OX,'COEFFICIENT OF SKEWNESS = ',E13.5,/,
+ 10X,'COEFFICIENT OF KURTOSIS = ',E13.5,/)

C**** DIAGNOSTIC MESSAGE

SHIFT=XMEAN/SD
IF (SHIFT ,GT. 0.05) THEN
WRITE (6,100) XMEAN,SDSHIFT

100 FORMAT (U,' MEAN VALUE OF THE PROCESS IS NOT ZERO!!!! ',/,
1 ' MEAN = ',E13.5,' SD = ',E13.5,' RATIO ',F7.4,/)

ELSE
END IF

C**** RECOMPUTE F(I) WHEN MEAN IS EXCLUDED

DO 98 I=1,NPT
F(I)=F(I)-XMEAN

98 CONTINUE
IF (IMEAN .EQ. 1) THEN
SHIFT=0.0
ELSE
END IF
DSD=SD/NDIV ! Increment in actual value

C**** WRITE RESULTS ON OUTPUT FILES

WRITE (7,310)
310 FORMAT(' PROBABILITY DENSITY',/)

WRITE (7,313) XMEAN,SDRMSNPTDTNDIVT
WRITE (7,314) IMEAN
WRITE (8,311)
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311 FORMAT(' PEAK DISTRIBUTION')
WRITE (8,313) XMEAN,SDRMSNPTIDTNDIVT
WRITE (8,314) IMEAN
WEITE (9,312)

312 FORMAT(' UP-CROSSING RATE',/)
WRITE (9,313) XMEANSDtRMSlNPTDT,NDIVT
WRITE (9,314) IMEAN
WRITE (10,315) SD
WRITE (11,316) SD

313 FORMAT (' MEAN = ',E13.5,' SD = ',E13.5,' RMS ',E13.5,/,
1 ' NO. OF PTS =',15,' DT ',E13.5, TOTAL DIV. o13)

A 314 FORMAT(/,2X,' IMEAN = ',12,' NOTE: IF IMEAN=1 THEN MEAN EXCLUDED')
315 FORMAT(' THEORETICAL GAUSSIAN WITH MEAN 0. AND '

1 ' SD = E13.5,/////)
316 FORMAT(' THEORETICAL RAYLEIGH WITH ',

1 ' SD ',E13.5,//I//)
RETURN
END

C**** SUBROUTINE DENSITY
C**** THIS SUBROUTINE CALCULATES THE PROBABILITY DENSITY', THEORETICAL ****
C**** GAUSSIAN DESNTIY WITH ZERO MEAN AND STANDARD DEVIATION OF THE ****
C**** RANDOM PROCESS

SUBROUTINE DENSITY(FXDENSNPT,SDDSDNHALFNHALF1,NDIVTDXSHIFT)
COMMON/TITLES/ TITLE(20),SUBTIT(20)
DIMENSION F(1), XDENS(1)
PI=3.1415926
SQ2PI=SQRT(2.*PI)
DO 10 I=1,NDIVT
XDENS(I)=0.

10 CONTINUEDO 20 I=I,NPT
TEP=F(I)/DSD
ITEMP=IINT(TEMP) ! Locate the data belongs to which interval
IF (TEMP .GE. 0.) THEN
IF (ITEMP .GT. NHALF) ITEMP=NHALF-1
XDENS(NHALF1+ITEMP)=XDENS(NHALF1+ITEMP)+1.
ELSE
IF (ITEMP .LT. -NHALF) ITEMP=-NHALF+1
XDENS(NHALF+ITEMP)=XDENS(NHALF+ITENP)+1.
END IF

20 CONTINUE

C**** WRITE RESULTS

WRITE(7,1234) (TITLE(KK),KK=1,20)
* 1234 FORMAT(X,2OA4)

WRITE(7,1234) (SUBTIT(KK),KK=1,20)
WRITE (7,210)

210 FORMAT(' MAGNITUDE/SD PROBA. DENS. NO.OF OCCUR. GAUSSIAN',
1 /,' (NORMALIZED)')

WRITE (10,211)
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211 FORMAT(" MAGNITUDE/SD PROBA. DENSITY',
1 /1,' (GAUSSIAN)')

AREA=0.0
X=-4.0
DO 40 1=1,NDIVT
XDX=X+DX
XDENS1=XDENS(I)/NPT/DX
AilEA=AREA+XDENS1

C**** CALCULATE THE THEORETICAL GAUSSIAN WITH ZERO MEAN

GAUSS=EXP(-X*X/2.)/SQ2PI
GAUDX=EXP(-XDX*XDX/2.)/SQ2PI
Y=X+SHIFT
YDXfY+DX
IF (I oEQI 1) WRITE (7,220) YZEROoZEROGAUSS
WRITE (7r220) Y, XDENS1,XDENS(I),GAUSS
WRITE (7,220) YDXXDENSI,XDENS(I),GAUDX

220 FORMAT (2(3XF11.5),3X,F8.1,3XoF11.5)
IF (I .EQ. NDIVT) WRITE (7,220) YDX,ZEROZEROGAUDX
IF (I .EQ. 1) WRITE (10,220) Y, GAUSS
WRITE (10,220) Y, GAUSS
WRITE (10,220) YDX, GAUDX
IF (I .EQ. NDIVT) WRITE (10,220) YDX, GAUDX
X=X+DX

40 CONTINUE
AREA=AREA*DX
WRITE (6,700) SD, AREA

700 FORMAT (' SD = ',E12.5,' AREA OF DENSITY CURVE ',F8.4,/)
RETURN
END

C**** SUBROUTINE PEAKDIS
C**** THIS SUBROUTINE CALCULATES THE PEAK DISTRIBUTION AND
C**** THE THEORETICAL RAYLEIGH DISTRIBUTION

SUBROUTINE PEAKDIS(F,XNPKNPfSD,DSDNHALF,NHALF1,NDIYT,DX,
1 TTOTALSHIFT)

COMMON/TITLES/ TITLE(20),SUBTIT(20)
DIMENSION F(1),XNPK(1)
DO 15 I=1,NDIVT
XNPK(I)=0.

15 CONTINUE
DO 20 I=1,NPT
IF (I .EQ. I .OR. I .EQ. NPT) GO TO .

DF1=F(I)-F(I-1)
DF2=F(I+1)-F(I)
DSIGN=DF1*DF2
IF (DSIGN .GT. 0.) GO TO 20
IF (DF2 *GT. PF1) GO TO 20
TEMP=F(I)/DSD
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I TEM4P- lINT (TEMP)
IF (TEMP .GT. 0.) THEN
IF (ITEMP .GT. NHALF) ITEMP=-NHALF-1
XNPK(NHALF1+ITEMP)=XNPK(NHALF14.ITEMP)+1.
ELSE
IF (ITEMP .LT. -NHALF) ITEMP=-NHALF+l
XNPK(NHALF+ITEMP)=XNPK(NHALF+ITEMP)+l.
END IF

20 CONTINUE
XNPEAK=0.
DO 30 I=1gNDIVT
XNPEAK=XNPEAK+XNPK( I)

30 CONTINUE ! XNPEAI( IS THE TOTAL NO. OF PEAKS
PEAKT=XNPEAK/TTOTAL ! NO. OF PEAKS PER UNIT TIM4E
WRITE (6,210) XNPEAKs PEAKT
WRITE(8,1234) (TITLE(KK),KK=lv20)

1234 FORMAT(Xt20A4)
WRITE(8, 1234) (SUBTIT(KK) ,KK:1 ,20)
WRITE (8s210) XNPEAKq PEAKT

210 FORMAT(' TOTAL NO. OF PEAKS = ',F1O.1,
1 ' NO. OF PEAKS PER SEC. = ',FlO.l)
WRITE (8,211)

211 FORMAT(' MAGNITUDE/SD PEAK DISTR. NO. OF PEAKS RAYLEIGH',
1 1'(NORMAIZED)')
WHITE (11,212)

212 FORMAT(' MAGNITUDE/SD PROBA. DENSITY'
1 1'(RAYLEIGH)')
X=-4.0
DO 40 I=1,NDIVT
XDX=X+DX
XNPK1=XNPK( I)/XNPEAK/DX
IF (XDX .LT. 0.0) THEN
RAY=0.O
RAYDX=0.0
ELSE
RAY=X*EXP( -X*X/2.)
RAYDX=XDX*EXP( -XDX*XDX/2.)
END IF
Y=X+SHIFT
YDX=Y+DX
IF (I .EQ. 1) WRITE (8,220) YqZEROZEROvRAY
WHITE (8,220) Y, XNPK1,XNPK(I)IRAY
WRITE (8o220) YDX,XNPK11XNPK(I),RAYDX

220 FORMAT (2(3XF11.5),3X,F8.1,3XFl1.5)
IF (I .EQ. NDIVT) WRITE (8,220) YDXoZERO*ZEROoRAYDX
IF (I .EQ. 1) WRITE (11,220) X, RAY
WRITE (11,220) X, RAY
WRITE (11,220) XDX, RAYDX
IF (I -EQ. NDIVT) WRITE (119220) XDX, RAYDX
X=X+DX

40 CONTINUE
RETURN
END
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SUBROUTINE UPCROSSR

THIS SUBROUTINE CALCULATW, THE UICROSSING ilATE AT DI~FFUENT

THRESHOLD LEVELS.

SUBROUTINE UPCROSSR(FXCRO~SN'iTýSD,IDSDNHALFNHALF1 ,NDIVTDXs
TTOTALqSHIýT)

COMt4ON/TITLES/ TITLE(20) ,SUBTIT( 20)
DIMENPION F(1) XCRUSS(I.
WRITE(ý;,1234) (TITLE(KK)aKK=1o2O)
FORMAT(Xv20A4)
tfRITE(9l1234) (SUBTIT(KK),KK=1,20)
WIRITE (9,210)
]P?ORMAT(/, 3X, 'THRESHOLD LEVEL/SD UPCHOSSING RAJTE (#/SEC.) ')
DO 10 I=1,NDIVT
XCROsS(I)0.
CONTI NUE
DO 20 I1=1NPT
IF (F(I) .GT. F(1+1)) GO TO 20 !Only up-crossing is counted.
TEMP1=F(I )/DSD
TEMP2=F( 1+1 )/DSD
iTEMP1=IINT(TEMP1)
ITENP2=IINT(TEMP2)
IF (TEMP1 G(T. 0.) THEN
DO 30 K=ITEMP1ITEI4P2-1
J(CROSS(NHALF1+1+K)=XCROSS(NIIALF1+1+K)+1 .0
CONTINUE
rOLSE
END IF
XF (TEMP2 ALT. 0.) THEN
DO 40 K=ITEMP11ITEMP2-1
XCROSS(NHALF+1+K)=XCR0SS (NHALF+1+K) +1.0
CONTINUE
ELSE
END IF
IF (TEMP1*TEMP2 ALT. 0.) THEN
DO 50 K=ITEMP1,0
KCR08S(NHALF+1+K)=XCROSS(NHALF41+K) +1.*0
6"ONTI NUE
DO 60 K=OITEMP2-1
1ýCROSS(NHALF1+1+K)=XCROSS(NHALF1+1+K)+1 .0
"'dONTI NUE
ELSE
END IF
""ONTI NUE
ýl-4.0+DX I the lowest level for crossing is -(4-DX)SD
33 70 I4,1NDIVT
&:~X+SHIFT
KCR0SS( I)=XCROSs( I)/TTOTAL
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200 FORMAT (1OX,F11.5,1OXjF9.3)
X=X+DX

70 CONTINUE
RETURN
END
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C**** This program calculates the damage from a given peak
C**** distribution. Input the standard deviation of the stress
C**** process, SD (in ksi) and the total # of peaks per second,
C**** TPEAK, and the material fatigue constants ZLAMDA and B.
C**** The peak distribution histogram is found on FOR008 created
C**** from the program PDF run earlier (10 divisions per s.d. in
C**** the histogram). Output is E[Mt]*tau and time to failure in ***
C**** seconds.,

WRITE(6,1010)
1010 FORMAT(1H1,//,10X,' DAMAGE ,/,

1 lox,' FOR AFSC/ASD/PKRNA ,/1
2 loX,$ WPAFB,OHIO '.1,
3 loX,' BY ANAMET LABORATORIES, INC.'/,!
4 lOX, HAYWARD, CALIFORNIA I/,
5 10X,'CONTRACT NO. F33615-89-C-3210',//)

READ(5,190) SD,TPEAKZLAMDAB
100 FORMAT(4F10.O)

WRITE(6,1009) SDTPEAKZLAMDA,B
1009 FORMAT(1OX,' STANDARD DEVIATION OF STRESS PROCESS= ',F10.1,/,

1 loX,$ TOTAL NUMBER OF PEAKS PER SECOND= ',F10.1,/,
2 loX,' FATIGUE PARAMETER, LAMDA= ',F1O.2,/,
3 loX,' FATIGUE PARAMETER, B= 1,E10.3,/)
DX=0.1*SD
SUM=O.0
READ (8,1100)

1100 FORMAT(/(//////I/)
C**

DO 10 1=1,80
READ (8,1200) XY

1200 FORMAT(2G,/)
IF (Y .EQ. 0.0) GO TO 10
X=(X+0.05)*SD
PROB=Y/SD
SLAMDA=ABS(X)**ZLAMDA
SUM=SUM+PROB*SLAMDA

SUM=SUM*DX

EMT=B/SUM
TFAIL=B/SUM/TPEAK
WRITE (6,1300) SUM, EMT, TFAIL

1300 FORMAT(10X,' INTEGRATION = ',E14.6,/,
1 10X,' E[Mt]*tau = ',E14.6,/,
2 lOX,' TIME TO FAILURE= ',E14.6,' SEC',/)

STOP
END

*U.S. Govomrmn PUn gOffte:1Q2-846127162,.M 134



Sep 15 99 11:02a p.2

DEPARTMENT OF THE AIR FORCE
AIR FORCE RESEARCH LABORATORY

WRIOtMTIPATT1•RSON AIR FORCE BASE OHIO 454M

MEMORANDUM FOR: Defense Technical Infonration Center/OMI
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218

FROM: Det 1 AFRL/WST
Bldg 640 Rm 60
2331 12th Street
Wright-Patterson AFB OH 45433-7950

SUBJECT: Notice of Changes in Technical Report(s) (~~ 6~
Please change subject report(s) as follows:

~~ 9~

~p/9i -M&,/V) Toe2 a m L .ea d

/S IN Oand Technical Editing
T~echncal inforuiatlon Division


